IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2014-100-3.html
   My bibliography  Save this article

Degrees of Separation, Social Learning, and the Evolution of Cooperation in a Small-World Network

Author

Listed:

Abstract

We analyze a novel agent-based model of a social network in which agents make contributions to others conditional upon the social distance, which we measure in terms of the “degrees of separation†between the two players. On the basis of a simple imitation model, the emerging strategy profile is characterized by high levels of cooperation with those who are directly connected to the agent and lower but positive levels of cooperation with those who are indirectly connected to the agent. Increasing maximum interaction distance decreases cooperation with close neighbors but increases cooperation with distant neighbors for a net negative effect. On the other hand, allowing agents to learn and imitate socially distant neighbors increases cooperation for all types of interaction. Combining greater interaction distance with greater learning distance leads to a positive change in the total social welfare produced by the agents’ contributions.

Suggested Citation

  • Nicholas Seltzer & Oleg Smirnov, 2015. "Degrees of Separation, Social Learning, and the Evolution of Cooperation in a Small-World Network," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-12.
  • Handle: RePEc:jas:jasssj:2014-100-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/4/12/12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yen-Sheng Chiang, 2013. "Cooperation Could Evolve in Complex Networks when Activated Conditionally on Network Characteristics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(2), pages 1-6.
    2. Shade T. Shutters & David Hales, 2013. "Tag-Mediated Altruism is Contingent on How Cheaters Are Defined," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(1), pages 1-4.
    3. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    4. E. Ostrom, 2010. "A Behavioral Approach to the Rational Choice Theory of Collective Action Presidential Address, American political Science Association, 1997," Public administration issues, Higher School of Economics, issue 1, pages 5-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    2. Gao, Lin, 2017. "Between Trust and Performance: Exploring Socio-Economic Mechanisms on Directed Weighted Regular Ring with Agent-Based Modeling," MPRA Paper 78428, University Library of Munich, Germany.
    3. Fengjie Xie & Jing Shi & Jun Lin, 2017. "Impact of interaction style and degree on the evolution of cooperation on Barabási–Albert scale-free network," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    4. Gao, Lin, 2016. "Trust and Performance: Exploring Socio-Economic Mechanisms in the “Deep” Network Structure with Agent-Based Modeling," MPRA Paper 75214, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José M Galán & Maciej M Łatek & Seyed M Mussavi Rizi, 2011. "Axelrod's Metanorm Games on Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Moeliono, Moira & Brockhaus, Maria & Gallemore, Caleb & Dwisatrio, Bimo & Maharani, Cynthia D. & Muharrom, Efrian & Pham, Thuy Thu, 2020. "REDD+ in Indonesia: A new mode of governance or just another project?," Forest Policy and Economics, Elsevier, vol. 121(C).
    3. Angelsen, Arild & Naime, Julia, 2024. "The mixed impacts of peer punishments on common-pool resources: Multi-country experimental evidence," World Development, Elsevier, vol. 181(C).
    4. Röttgers, Dirk, 2016. "Conditional cooperation, context and why strong rules work — A Namibian common-pool resource experiment," Ecological Economics, Elsevier, vol. 129(C), pages 21-31.
    5. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    6. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    7. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    8. François Bousquet & Valérie Barbat, 2021. "Capital social collectif et rites de passage," Post-Print hal-03768511, HAL.
    9. Jeroen Struben & Brandon H. Lee & Christopher B. Bingham, 2020. "Collective Action Problems and Resource Allocation During Market Formation," Post-Print hal-02927584, HAL.
    10. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    11. Claudia Keser & Maximilian Späth, 2020. "The Value of Bad Ratings: An Experiment on the Impact of Distortions in Reputation Systems," CIRANO Working Papers 2020s-22, CIRANO.
    12. Ugo Merlone & Daren Sandbank & Ferenc Szidarovszky, 2013. "Equilibria analysis in social dilemma games with Skinnerian agents," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 12(2), pages 219-233, November.
    13. Bruce Desmarais, 2012. "Lessons in disguise: multivariate predictive mistakes in collective choice models," Public Choice, Springer, vol. 151(3), pages 719-737, June.
    14. Ortiz-Riomalo, Juan Felipe & Koessler, Ann-Kathrin & Engel, Stefanie, 2021. "Inducing perspective-taking for prosocial behaviour in natural resource management," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    15. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    16. Aslihan Akdeniz & Matthijs van Veelen, 2019. "The cancellation effect at the group level," Tinbergen Institute Discussion Papers 19-073/I, Tinbergen Institute.
    17. Sujai Shivakumar, 2017. "Innovation as a Collective Action Challenge," Advances in Austrian Economics, in: The Austrian and Bloomington Schools of Political Economy, volume 22, pages 159-173, Emerald Group Publishing Limited.
    18. Anne-Sophie Merot & Frédérique Grazzini & Jean-Pierre Boissin, 2014. "Gouvernance et développement durable : Le cas de la responsabilité élargie du producteur dans une filière de gestion des déchets," Post-Print halshs-01185814, HAL.
    19. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    20. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2014-100-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.