IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20190073.html
   My bibliography  Save this paper

The cancellation effect at the group level

Author

Listed:
  • Aslihan Akdeniz

    (University of Amsterdam)

  • Matthijs van Veelen

    (University of Amsterdam)

Abstract

Group selection models combine selection pressure at the individual level with selection pressure at the group level (Sober and Wilson, 1998; Traulsen and Nowak, 2006; Wilson and Wilson, 2007; Boyd and Richerson, 2009; Simon, 2010; Simon et al., 2013; Luo, 2014; van Veelen et al., 2014; Luo and Mattingly, 2017). Cooperation can be costly for individuals, but beneficial for the group, and therefore, if individuals are sufficiently much assorted, and cooperators find themselves in groups with disproportionately many other cooperators, cooperation can evolve. The existing literature on group selection generally assumes that competition between groups takes place in a well-mixed population of groups, where any group competes with any other group equally intensely. Competition between groups however might very well occur locally; groups may compete more intensely with nearby than with far-away groups. We show that if competition between groups is indeed local, then the evolution of cooperation can be hindered significantly by the fact that groups with many cooperators will mostly compete against neighbouring groups that are also highly cooperative, and therefore harder to outcompete. The existing empirical method for determining how conducive a group structured population is to the evolution of cooperation also implicitly assumes global between group competition, and therefore gives (possibly very) biased estimates.

Suggested Citation

  • Aslihan Akdeniz & Matthijs van Veelen, 2019. "The cancellation effect at the group level," Tinbergen Institute Discussion Papers 19-073/I, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20190073
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/19073.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    2. Matthijs van Veelen & Shishi Luo & Burton Simon, 2014. "A Simple Model of Group Selection that cannot be analyzed with Inclusive Fitness," Tinbergen Institute Discussion Papers 14-013/I, Tinbergen Institute.
    3. Rusch, Hannes, 2018. "Ancestral kinship patterns substantially reduce the negative effect of increasing group size on incentives for public goods provision," Journal of Economic Psychology, Elsevier, vol. 64(C), pages 105-115.
    4. Martin A. Nowak & Corina E. Tarnita & Edward O. Wilson, 2010. "The evolution of eusociality," Nature, Nature, vol. 466(7310), pages 1057-1062, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.
    2. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    4. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.
    5. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    6. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    7. Catherine C Eckel & Enrique Fatas & Sara Godoy & Rick K Wilson, 2016. "Group-Level Selection Increases Cooperation in the Public Goods Game," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-13, August.
    8. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    9. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    10. Som B Ale & Joel S Brown & Amy T Sullivan, 2013. "Evolution of Cooperation: Combining Kin Selection and Reciprocal Altruism into Matrix Games with Social Dilemmas," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    11. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    12. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    13. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    14. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Lessard, Sabin & Lahaie, Philippe, 2009. "Fixation probability with multiple alleles and projected average allelic effect on selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 266-277.
    16. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    17. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. OKASHA, Samir & WEYMARK, John A. & BOSSERT, Walter, 2013. "Inclusive Fitness Maximization: An Axiomatic Approach," Cahiers de recherche 2013-04, Universite de Montreal, Departement de sciences economiques.
    19. Yasuhiro Shirata, 2020. "Evolution of a Collusive Price in a Networked Market," Dynamic Games and Applications, Springer, vol. 10(2), pages 528-554, June.
    20. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.

    More about this item

    Keywords

    Group selection; cancellation effect;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20190073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.