IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2012-32-3.html
   My bibliography  Save this article

Cooperation Could Evolve in Complex Networks when Activated Conditionally on Network Characteristics

Author

Listed:
  • Yen-Sheng Chiang

Abstract

The investigation of how cooperation is achieved on graphs in the field of spatial game or network reciprocity has received proliferating attention in the biological and sociological literature. In line of the research, this paper provides an new account of how cooperation could evolve in complex networks when actors use information of network characteristics to strategize whether to cooperate or not. Different from past work that focuses exclusively on the evolution of unconditional cooperation, we are proposing new strategies that are choosy in whom to cooperate with, conditional on the structural attributes of the nodes occupied by actors. In a series of evolutionary tournaments conducted by computer simulation, the model shows that a pair of simple strategies-cooperating respectively with higher and lower nodal-attribute neighbors-can be advantageous in adaptive fitness when competing against unconditional cooperation and defection. In particular, these strategies of conditional cooperation work well in random graphs-a network known for being unfavorable to the selection of cooperation. This paper contributes to the literature by showing how network characteristics can serve as a mechanism to sustain cooperation in some hostile network environments where unconditional cooperation is unable to evolve. The cognitive foundations of the mechanism and its implications are discussed.

Suggested Citation

  • Yen-Sheng Chiang, 2013. "Cooperation Could Evolve in Complex Networks when Activated Conditionally on Network Characteristics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(2), pages 1-6.
  • Handle: RePEc:jas:jasssj:2012-32-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/16/2/6/6.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    2. Nicholas Seltzer & Oleg Smirnov, 2015. "Degrees of Separation, Social Learning, and the Evolution of Cooperation in a Small-World Network," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-12.
    3. Peter Revay & Claudio Cioffi-Revilla, 2018. "Survey of evolutionary computation methods in social agent-based modeling studies," Journal of Computational Social Science, Springer, vol. 1(1), pages 115-146, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2012-32-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.