IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v40y2006i10p917-936.html
   My bibliography  Save this article

A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration

Author

Listed:
  • Dial, Robert B.

Abstract

This paper presents a novel user-equilibrium (UE) traffic assignment algorithm, which under conventional assumptions, promises to compute UE arc flows to acceptable precision, regardless of the network's topology, size or congestion: - The algorithm takes the simple approach of shifting flow from a costliest path to a cheapest path until the costs of all used paths are within a given [epsilon] of the cheapest. - Because of being path-based, it avoids tailing. - In spite of being path-based, it neither stores nor enumerates paths. - These efficiencies derive from decomposing the problem into a sequence of easy single-origin problems on acyclic sub-networks. Solutions to this sequence of sub-network flows converge rapidly to a sharp practical estimate of UE arc flows--as is amply demonstrated by tests using the Chicago region's 40,000-arc network model.

Suggested Citation

  • Dial, Robert B., 2006. "A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 917-936, December.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:10:p:917-936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(06)00026-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takashi Akamatsu, 1997. "Decomposition of Path Choice Entropy in General Transport Networks," Transportation Science, INFORMS, vol. 31(4), pages 349-362, November.
    2. Jayakrishnan, R. & Tsai, Wei T. & Prashker, Joseph N. & Rajadhyaksha, Subodh, 1994. "A Faster Path-Based Algorithm for Traffic Assignment," University of California Transportation Center, Working Papers qt2hf4541x, University of California Transportation Center.
    3. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    4. Dial, Robert B., 1999. "Minimal-revenue congestion pricing part I: A fast algorithm for the single-origin case," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 189-202, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Shiaw-Shyan & Wang, Chung-Yung & Sung, Yi-Wei, 2018. "Time-dependent trip-chain link travel time estimation model with the first-in–first-out constraint," European Journal of Operational Research, Elsevier, vol. 267(2), pages 415-427.
    2. Gentile, Guido, 2016. "Solving a Dynamic User Equilibrium model based on splitting rates with Gradient Projection algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 120-147.
    3. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    4. Feng, Liyang & Xie, Jun & Liu, Xiaobo & Tang, Youhua & Wang, David Z.W. & Nie, Yu (Marco), 2024. "Is order-2 proportionality good enough for approximating the most likely path flow in user equilibrium traffic assignment?," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    5. Bar-Gera, Hillel, 2010. "Traffic assignment by paired alternative segments," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1022-1046, September.
    6. Dial, Robert B., 2000. "Minimal-revenue congestion pricing Part II: An efficient algorithm for the general case," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 645-665, November.
    7. Lo, Hong K. & Chen, Anthony, 2000. "Traffic equilibrium problem with route-specific costs: formulation and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 493-513, August.
    8. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    9. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    10. Soulaymane Kachani & Georgia Perakis, 2009. "A Dynamic Travel Time Model for Spillback," Networks and Spatial Economics, Springer, vol. 9(4), pages 595-618, December.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
    13. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    14. Huey‐Kuo Chen & Huey‐Wen Chou, 2008. "Supply chain network equilibrium problem with capacity constraints," Papers in Regional Science, Wiley Blackwell, vol. 87(4), pages 605-621, November.
    15. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    16. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
    17. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    18. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    19. Dial, Robert B., 1997. "Bicriterion traffic assignment: Efficient algorithms plus examples," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 357-379, October.
    20. Zhaobo Chen & Chunying Tian & Ding Zhang & Dongyan Chen, 2020. "Dynamic model of a supply chain network with sticky price," Operational Research, Springer, vol. 20(2), pages 649-670, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:10:p:917-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.