IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p905-925.html
   My bibliography  Save this article

Vehicle routing for connected service areas - a versatile approach covering single, hierarchical, and bi-criteria objectives

Author

Listed:
  • Bock, Stefan

Abstract

Vehicle routing in urban areas or in-house tour planning is characterized by the fact that tours have to service orders in areas with limited road or aisle access. During last mile delivery, courier service providers often face the situation that subsets of customers in urban areas are located along a single street that can be accessed from only one or two directions. This also applies to warehouses, where, due to the given grid layout, pickers locate products on shelves only in specific areas positioned along an aisle between two neighboring cross aisles. By being confronted with a substantial time and/or cost pressure, those tour planning applications have to deal with the trade-off between service orientation and cost minimization. In order to cover many of those applications, this study proposes a general model that integrates the definition of customizable service areas with limited access and soft due dates of urgent orders, whereas the objective function can be defined in a versatile way covering to choose between a single objective, a hierarchical, and a bi-criteria objective system. The model is dubbed the Vehicle Routing Problem of Service Areas (VRPSA). A comprehensive complexity analysis of the VRPSA for different objective systems shows that a pure travel cost minimization variant can be solved to optimality in polynomial time, whereas the bi-criteria variant simultaneously pursuing travel cost and tardiness cost minimization is proven to be intractable. In order to generate tour plans, a customizable best-first branch-and-bound algorithm is developed and assessed through a computational study.

Suggested Citation

  • Bock, Stefan, 2024. "Vehicle routing for connected service areas - a versatile approach covering single, hierarchical, and bi-criteria objectives," European Journal of Operational Research, Elsevier, vol. 313(3), pages 905-925.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:905-925
    DOI: 10.1016/j.ejor.2023.08.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172300680X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Kjetil Fagerholt, 2000. "Evaluating the trade-off between the level of customer service and transportation costs in a ship scheduling problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 27(2), pages 145-153, April.
    4. Emde, Simon & Schneider, Michael, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 96055, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    6. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    7. Amir Izadi & Mohammad Nabipour & Omid Titidezh, 2019. "Cost Models and Cost Factors of Road Freight Transportation: A Literature Review and Model Structure," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 11(3), pages 257-278, July.
    8. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    9. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    10. C Basnet & L R Foulds & J M Wilson, 1999. "Heuristics for vehicle routing on tree-like networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 627-635, June.
    11. Harilaos N. Psaraftis & Marius M. Solomon & Thomas L. Magnanti & Tai-Up Kim, 1990. "Routing and Scheduling on a Shoreline with Release Times," Management Science, INFORMS, vol. 36(2), pages 212-223, February.
    12. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    13. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    14. Ruslan Sadykov & Eduardo Uchoa & Artur Pessoa, 2021. "A Bucket Graph–Based Labeling Algorithm with Application to Vehicle Routing," Transportation Science, INFORMS, vol. 55(1), pages 4-28, 1-2.
    15. Cambazard, Hadrien & Catusse, Nicolas, 2018. "Fixed-parameter algorithms for rectilinear Steiner tree and rectilinear traveling salesman problem in the plane," European Journal of Operational Research, Elsevier, vol. 270(2), pages 419-429.
    16. Martine Labbé & Gilbert Laporte & Hélène Mercure, 1991. "Capacitated Vehicle Routing on Trees," Operations Research, INFORMS, vol. 39(4), pages 616-622, August.
    17. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    18. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    19. Bock, Stefan, 2015. "Solving the traveling repairman problem on a line with general processing times and deadlines," European Journal of Operational Research, Elsevier, vol. 244(3), pages 690-703.
    20. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    21. Stephan Westphal & Sven Krumke, 2008. "Pruning in column generation for service vehicle dispatching," Annals of Operations Research, Springer, vol. 159(1), pages 355-371, March.
    22. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    23. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    24. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    25. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    26. Joris van de Klundert & Laurens Wormer, 2010. "ASAP: The After-Salesman Problem," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 627-641, March.
    27. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    28. Willem E. de Paepe & Jan Karel Lenstra & Jiri Sgall & René A. Sitters & Leen Stougie, 2004. "Computer-Aided Complexity Classification of Dial-a-Ride Problems," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 120-132, May.
    29. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    30. Simon Emde & Michael Schneider, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Transportation Science, INFORMS, vol. 52(3), pages 657-672, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    2. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    3. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    4. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    5. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    6. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    7. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    9. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    10. Ozbaygin, Gizem & Savelsbergh, Martin, 2019. "An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 207-235.
    11. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    13. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    14. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    15. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    16. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    17. Gianpaolo Ghiani & Emanuele Manni & Barrett W. Thomas, 2012. "A Comparison of Anticipatory Algorithms for the Dynamic and Stochastic Traveling Salesman Problem," Transportation Science, INFORMS, vol. 46(3), pages 374-387, August.
    18. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    19. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    20. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:905-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.