Exploring the application of machine learning to the assembly line feeding problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s12063-021-00201-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robin Hanson & Lars Medbo, 2019. "Man-hour efficiency of manual kit preparation in the materials supply to mass-customised assembly," International Journal of Production Research, Taylor & Francis Journals, vol. 57(11), pages 3735-3747, June.
- Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
- Emde, Simon & Schneider, Michael, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 96055, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
- Battini, Daria & Faccio, Maurizio & Persona, Alessandro & Sgarbossa, Fabio, 2009. "Design of the optimal feeding policy in an assembly system," International Journal of Production Economics, Elsevier, vol. 121(1), pages 233-254, September.
- Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
- Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
- Bozer, Yavuz A. & McGinnis, Leon F., 1992. "Kitting versus line stocking: A conceptual framework and a descriptive model," International Journal of Production Economics, Elsevier, vol. 28(1), pages 1-19, November.
- Simon Emde & Michael Schneider, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Transportation Science, INFORMS, vol. 52(3), pages 657-672, June.
- Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
- Antonio Casimiro Caputo & Pacifico Marcello Pelagagge & Paolo Salini, 2018. "Selection of assembly lines feeding policies based on parts features and scenario conditions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1208-1232, February.
- Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
- Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
- Nico André Schmid & Veronique Limère, 2019. "A classification of tactical assembly line feeding problems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(24), pages 7586-7609, December.
- Frank Wiengarten & Prakash J. Singh & Brian Fynes & Ali Nazarpour, 2017. "Impact of mass customization on cost and flexiblity performances: the role of social capital," Operations Management Research, Springer, vol. 10(3), pages 137-147, December.
- Maurizio Faccio & Mauro Gamberi & Marco Bortolini & Francesco Pilati, 2018. "Macro and micro-logistic aspects in defining the parts-feeding policy in mixed-model assembly systems," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 31(4), pages 433-462.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adenipekun, Ebenezer Olatunde & Limère, Veronique & Schmid, Nico André, 2022. "The impact of transportation optimisation on assembly line feeding," Omega, Elsevier, vol. 107(C).
- Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
- Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
- Stefan Fedtke & Nils Boysen & Patrick Schumacher, 2023. "In-line kitting for part feeding of assembly lines: workload balancing and storage assignment to reduce the workers’ walking effort," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 717-758, September.
- Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
- Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
- Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
- Bingtao Quan & Sujian Li & Kuo-Jui Wu, 2022. "Optimizing the Vehicle Scheduling Problem for Just-in-Time Delivery Considering Carbon Emissions and Atmospheric Particulate Matter," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
- Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
- Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
- Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
- Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
- Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
- Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
- Hanson, Robin & Finnsgård, Christian, 2014. "Impact of unit load size on in-plant materials supply efficiency," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 46-52.
- Mohammed Hichame Benbitour & Evren Sahin, 2018. "The use of internal cross-docking in just-in-time plants," Post-Print hal-01793491, HAL.
- Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
- Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
- Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
- Lyu, Zhongyuan & Huang, George Q., 2023. "Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 311(1), pages 112-124.
More about this item
Keywords
Assembly system; Part feeding; Factory logistics; Optimization; Machine learning; End-to-end learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:14:y:2021:i:3:d:10.1007_s12063-021-00201-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.