IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v51y2017i4p1161-1176.html
   My bibliography  Save this article

Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks

Author

Listed:
  • Harshad Khadilkar

    (TATA Consultancy Services, Andheri East, 400093 Mumbai, India)

Abstract

This paper evaluates the robustness of a railway network with respect to operational delays. It assumes that trains in the network operate on fixed routes and with reference to a timetable. A stochastic delay propagation model is proposed for identifying primary (externally imposed) delays and for computing the resultant secondary (knock-on) delays. Delay probability distributions are computed for each train at each station on its journey, using timetable and infrastructure data for identifying potential station resource conflicts with other trains. The delay predictions are used to evaluate schedule robustness using two newly proposed metrics. Individual robustness measures the ability of trains to limit the adverse effects of their own primary delays. On the other hand, collective robustness measures the ability of the network as a whole, to limit the knock-on effects of primary delays imposed on a small fraction of trains. The two metrics provide stochastic guarantees on the punctuality of trains when the published schedule is put in operation. The applicability of the proposed methodology is validated using empirical data from a portion of the Indian Railways network, containing more than 38,000 train arrival/departure records. While a railway network is used as a case study, the same ideas can be applied to any scheduled transportation network.

Suggested Citation

  • Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
  • Handle: RePEc:inm:ortrsc:v:51:y:2017:i:4:p:1161-1176
    DOI: 10.1287/trsc.2016.0703
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2016.0703
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2016.0703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Dessouky, Maged & Ordóñez, Fernando & Palmer, Kurt, 2010. "A delay estimation technique for single and double-track railroads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(4), pages 483-495, July.
    2. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, June.
    3. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    4. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    5. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    6. Goverde, Rob M.P., 2007. "Railway timetable stability analysis using max-plus system theory," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 179-201, February.
    7. Meester, Ludolf E. & Muns, Sander, 2007. "Stochastic delay propagation in railway networks and phase-type distributions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 218-230, February.
    8. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    9. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    10. AhmadBeygi, Shervin & Cohn, Amy & Guan, Yihan & Belobaba, Peter, 2008. "Analysis of the potential for delay propagation in passenger airline networks," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    2. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
    2. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    3. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    4. Huang, Ping & Guo, Jingwei & Liu, Shu & Corman, Francesco, 2024. "Explainable train delay propagation: A graph attention network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    5. Thomas Spanninger & Beda Büchel & Francesco Corman, 2023. "Train Delay Predictions Using Markov Chains Based on Process Time Deviations and Elastic State Boundaries," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    6. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    7. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    8. Nikola Bešinović & Rob M. P. Goverde, 2019. "Stable and robust train routing in station areas with balanced infrastructure capacity occupation," Public Transport, Springer, vol. 11(2), pages 211-236, August.
    9. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    10. Huang, Ping & Wen, Chao & Fu, Liping & Lessan, Javad & Jiang, Chaozhe & Peng, Qiyuan & Xu, Xinyue, 2020. "Modeling train operation as sequences: A study of delay prediction with operation and weather data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    11. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    12. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    13. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    14. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    15. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    16. Gábor Maróti, 2017. "A branch-and-bound approach for robust railway timetabling," Public Transport, Springer, vol. 9(1), pages 73-94, July.
    17. Hassini, Elkafi & Verma, Manish, 2016. "Disruption risk management in railroad networks: An optimization-based methodology and a case studyAuthor-Name: Azad, Nader," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 70-88.
    18. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    19. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    20. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:51:y:2017:i:4:p:1161-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.