IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v44y2010i1p87-97.html
   My bibliography  Save this article

Continuum Approximation for Congestion Dynamics Along Freeway Corridors

Author

Listed:
  • Jorge A. Laval

    (School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Ludovic Leclercq

    (Université de Lyon, ENTPE/INRETS, Laboratoire Ingénierie Circulation Transport, 69518 Lyon, France)

Abstract

In this paper, congestion dynamics along crowded freeway corridors are modeled as a conservation law with a source term that is continuous in space. The source term represents the net inflow from ramps, postulated here as a location-dependent function of the demand for entering and exiting the corridor. Demands are assumed to be time-independent, which is appropriate for understanding the onset of congestion. Numerical and analytical results reveal the existence of four well-defined regions in time-space, two of which are transient. The conditions for the existence of congestion both in the freeway and in the on-ramps are identified, as well as the set of on-ramps that are most likely to become active bottlenecks. The results in this paper help explain the stochastic nature of bottleneck activation, and can be applied to devise effective system-wide ramp metering strategies that would prevent excessively long on-ramp queues.

Suggested Citation

  • Jorge A. Laval & Ludovic Leclercq, 2010. "Continuum Approximation for Congestion Dynamics Along Freeway Corridors," Transportation Science, INFORMS, vol. 44(1), pages 87-97, February.
  • Handle: RePEc:inm:ortrsc:v:44:y:2010:i:1:p:87-97
    DOI: 10.1287/trsc.1090.0294
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1090.0294
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1090.0294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    2. Jin, W. L. & Zhang, H. M., 2003. "On the distribution schemes for determining flows through a merge," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 521-540, July.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. M. Gugat & M. Herty & A. Klar & G. Leugering, 2005. "Optimal Control for Traffic Flow Networks," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 589-616, September.
    5. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Laval, Jorge A. & Costeseque, Guillaume & Chilukuri, Bargavarama, 2016. "The impact of source terms in the variational representation of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 204-216.
    3. Aliyu Nuhu Shuaibu, 2015. "Simulation of Crowd Movement in Spiral Pattern during Tawaf, in Makkah, Saudi Arabia," Modern Applied Science, Canadian Center of Science and Education, vol. 9(11), pages 192-192, October.
    4. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    5. Laval, Jorge A. & Chilukuri, Bhargava R., 2016. "Symmetries in the kinematic wave model and a parameter-free representation of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 168-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    2. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    3. Jin, Wen-Long & Laval, Jorge, 2018. "Bounded acceleration traffic flow models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 1-18.
    4. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    5. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    6. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    7. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    8. Malachy Carey & Chandra Balijepalli & David Watling, 2015. "Extending the Cell Transmission Model to Multiple Lanes and Lane-Changing," Networks and Spatial Economics, Springer, vol. 15(3), pages 507-535, September.
    9. Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
    10. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    11. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    12. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    13. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    14. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    15. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    16. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    17. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    19. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.
    20. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:44:y:2010:i:1:p:87-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.