IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i9p1302-1313.html
   My bibliography  Save this article

Capacity drops at merges: An endogenous model

Author

Listed:
  • Leclercq, Ludovic
  • Laval, Jorge A.
  • Chiabaut, Nicolas

Abstract

The Newell–Daganzo merge model is not only very simple but also accurately reproduces experimental findings. However, the capacity downstream of the merge is an exogenous variable in the model. This is a serious limitation for merges that behave as active bottlenecks because their downstream capacity is a direct consequence of the merging behavior. This paper proposes an analytical model that extends the Newell–Daganzo model by incorporating, endogenously, the capacity drop related to the merging process. Two cases are investigated depending on the traffic states on the on-ramp. The model properties are analyzed and a sensitivity analysis is performed to quantify the relative contribution of the each parameter in the capacity drop. Finally, the extended Newell–Daganzo model is validated with experimental data coming from an active merge bottleneck on the M6 freeway in UK.

Suggested Citation

  • Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1302-1313
    DOI: 10.1016/j.trb.2011.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511000579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    2. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    3. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    4. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    5. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    6. Newell, G. F., 1998. "A moving bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 531-537, November.
    7. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    8. Jin, W. L. & Zhang, H. M., 2003. "On the distribution schemes for determining flows through a merge," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 521-540, July.
    9. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    10. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Yuan & Hong K. Lo, 2021. "Multiclass Traffic Flow Dynamics: An Endogenous Model," Transportation Science, INFORMS, vol. 55(2), pages 456-474, March.
    2. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
    4. Kai Yuan & Victor L. Knoop & Serge P. Hoogendoorn, 2017. "A Microscopic Investigation Into the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate," Transportation Science, INFORMS, vol. 51(3), pages 852-862, August.
    5. Yang, Da & Jia, Bingmei & Dai, Liyuan & Jin, Jing Peter & Xu, Lihua & Chen, Fei & Zheng, Shiyu & Ran, Bin, 2022. "Optimization model for the freeway-exiting position decision problem of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 24-48.
    6. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    7. Li, Jia & Zhang, H.M., 2013. "Modeling space–time inhomogeneities with the kinematic wave theory," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 113-125.
    8. Jin, Zuan & Ma, Minghui & Liang, Shidong & Yao, Hongguang, 2024. "Differential variable speed limit control strategy consider lane assignment at the freeway lane drop bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    9. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    10. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    11. Jin, Wen-Long, 2017. "A first-order behavioral model of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 438-457.
    12. Xing-jian Xue & Feng Shi & Qun Chen, 2014. "Capacity Estimation for On-Ramp Merging Section of Urban Expressway Based on Time Headway Loss," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, February.
    13. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    14. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    15. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    16. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    17. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    18. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    19. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    20. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    21. Gao, Hang & Chen, Shenyang & Zhang, Michael, 2020. "Get More Out of Variable Speed Limit (VSL) Control: An Integrated Approach to Manage Traffic Corridors with Multiple Bottlenecks," Institute of Transportation Studies, Working Paper Series qt6th037wz, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    2. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    3. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    4. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    5. Kai Yuan & Victor L. Knoop & Serge P. Hoogendoorn, 2017. "A Microscopic Investigation Into the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate," Transportation Science, INFORMS, vol. 51(3), pages 852-862, August.
    6. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    7. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    8. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    9. Jin, Wen-Long, 2017. "A first-order behavioral model of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 438-457.
    10. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    11. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    12. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    13. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    14. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    15. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    16. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    17. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    18. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    19. Simoni, Michele D. & Claudel, Christian G., 2017. "A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 238-255.
    20. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1302-1313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.