The impact of source terms in the variational representation of traffic flow
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2016.09.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
- Li, Jia & Zhang, H.M., 2013. "Modeling space–time inhomogeneities with the kinematic wave theory," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 113-125.
- Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
- Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
- Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
- Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
- Laval, Jorge A. & Leclercq, Ludovic, 2013. "The Hamilton–Jacobi partial differential equation and the three representations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 17-30.
- Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
- Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
- Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
- Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
- Jorge A. Laval & Ludovic Leclercq, 2010. "Continuum Approximation for Congestion Dynamics Along Freeway Corridors," Transportation Science, INFORMS, vol. 44(1), pages 87-97, February.
- Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
- Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
- Daganzo, Carlos F., 2014. "Singularities in kinematic wave theory: Solution properties, extended methods and duality revisited," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 50-59.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
- Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
- Hans, Etienne & Chiabaut, Nicolas & Leclercq, Ludovic, 2015. "Applying variational theory to travel time estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 169-181.
- Wada, Kentaro & Usui, Kento & Takigawa, Tsubasa & Kuwahara, Masao, 2018. "An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 907-925.
- Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
- Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
- Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
- Ludovic Leclercq & Mahendra Paipuri, 2019. "Macroscopic Traffic Dynamics Under Fast-Varying Demand," Transportation Science, INFORMS, vol. 53(6), pages 1526-1545, November.
- Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
- Simoni, Michele D. & Claudel, Christian G., 2017. "A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 238-255.
- Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
- Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
- Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
- Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
- Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
- van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
- Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
- Zhang, Lele & Finn, Caley & Garoni, Timothy M. & de Gier, Jan, 2018. "Behaviour of traffic on a link with traffic light boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 116-138.
- Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
- Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Ke Han & Tao Yao & Chaozhe Jiang & Terry L. Friesz, 2017. "Lagrangian-based Hydrodynamic Model for Traffic Data Fusion on Freeways," Networks and Spatial Economics, Springer, vol. 17(4), pages 1071-1094, December.
More about this item
Keywords
Traffic flow; Source terms; Kinematic wave model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:94:y:2016:i:c:p:204-216. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.