IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v134y2020icp210-228.html
   My bibliography  Save this article

Statistical inference for two-regime stochastic car-following models

Author

Listed:
  • Xu, Tu
  • Laval, Jorge

Abstract

This paper presents the formulation of a family of two-regime car-following models where both free-flow and congestion regimes obey statistically independent random processes. This formulation generalizes previous efforts based on Brownian and geometric Brownian acceleration processes, each reproducing a different feature of traffic instabilities. The probability density of vehicle positions turns out to be analytical in our model, and therefore parameters can be estimated using maximum likelihood. This allows us to test a wide variety of hypotheses using statistical inference methods, such as the homogeneity of the driver/vehicle population and the statistical significance of the impacts of roadway geometry. Using data from two car-following experiments, we find that (i) model parameters are similar across repeated experiments within the same dataset but different across datasets, (ii) the acceleration error process is closer to a Brownian motion, and (iii) drivers press the gas pedal harder than usual when they come to an upgrade segment. Additionally, we explain the cause of traffic oscillations traveling downstream, which were observed both in the field data and in our simulations. The model is flexible so that newer vehicle technologies can be incorporated to test such hypotheses as differences in the car-following parameters of automated and regular vehicles, when data becomes available.

Suggested Citation

  • Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
  • Handle: RePEc:eee:transb:v:134:y:2020:i:c:p:210-228
    DOI: 10.1016/j.trb.2020.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151830955X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
    2. Chen, Danjue & Laval, Jorge A. & Ahn, Soyoung & Zheng, Zuduo, 2012. "Microscopic traffic hysteresis in traffic oscillations: A behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1440-1453.
    3. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    4. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    5. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 372-384, February.
    6. Bilbao-Ubillos, Javier, 2008. "The costs of urban congestion: Estimation of welfare losses arising from congestion on cross-town link roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1098-1108, October.
    7. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    8. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    9. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    10. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    11. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Obed Fosu & Francis Tabi Oduro & Carlo Caligaris, 2021. "Multilane analysis of a viscous second-order macroscopic traffic flow model," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-17, February.
    2. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    3. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    2. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    3. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    4. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    5. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    6. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    7. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    8. Xu, Yueru & Zheng, Yuan & Yang, Ying, 2021. "On the movement simulations of electric vehicles: A behavioral model-based approach," Applied Energy, Elsevier, vol. 283(C).
    9. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    10. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    11. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    12. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    13. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    14. Jin, Wen-Long & Laval, Jorge, 2018. "Bounded acceleration traffic flow models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 1-18.
    15. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    16. Delpiano, Rafael & Laval, Jorge & Coeymans, Juan Enrique & Herrera, Juan Carlos, 2015. "The kinematic wave model with finite decelerations: A social force car-following model approximation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 182-193.
    17. Kai Yuan & Victor L. Knoop & Serge P. Hoogendoorn, 2017. "A Microscopic Investigation Into the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate," Transportation Science, INFORMS, vol. 51(3), pages 852-862, August.
    18. Jun Du & Bin Jia & Shiteng Zheng, 2022. "Stability Analysis of Continuous Stochastic Linear Model," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
    19. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    20. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:134:y:2020:i:c:p:210-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.