IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i6p1850-1865.html
   My bibliography  Save this article

Parallel Bayesian Global Optimization of Expensive Functions

Author

Listed:
  • Jialei Wang

    (SensesAI, Beijing 100016, China)

  • Scott C. Clark

    (SigOpt, San Francisco, California 94104)

  • Eric Liu

    (Yelp, Inc., San Francisco, California 94105)

  • Peter I. Frazier

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

We consider parallel global optimization of derivative-free expensive-to-evaluate functions, and propose an efficient method based on stochastic approximation for implementing a conceptual Bayesian optimization algorithm proposed by Ginsbourger in 2008. At the heart of this algorithm is maximizing the information criterion called the “multipoints expected improvement,” or the q - EI . To accomplish this, we use infinitesimal perturbation analysis (IPA) to construct a stochastic gradient estimator and show that this estimator is unbiased. We also show that the stochastic gradient ascent algorithm using the constructed gradient estimator converges to a stationary point of the q - EI surface, and therefore, as the number of multiple starts of the gradient ascent algorithm and the number of steps for each start grow large, the one-step Bayes-optimal set of points is recovered. We show in numerical experiments using up to 128 parallel evaluations that our method for maximizing the q - EI is faster than methods based on closed-form evaluation using high-dimensional integration, when considering many parallel function evaluations, and is comparable in speed when considering few. We also show that the resulting one-step Bayes-optimal algorithm for parallel global optimization finds high-quality solutions with fewer evaluations than a heuristic based on approximately maximizing the q - EI . A high-quality open source implementation of this algorithm is available in the open source Metrics Optimization Engine (MOE).

Suggested Citation

  • Jialei Wang & Scott C. Clark & Eric Liu & Peter I. Frazier, 2020. "Parallel Bayesian Global Optimization of Expensive Functions," Operations Research, INFORMS, vol. 68(6), pages 1850-1865, November.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1850-1865
    DOI: 10.1287/opre.2019.1966
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1966
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    3. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter L. Salemi & Eunhye Song & Barry L. Nelson & Jeremy Staum, 2019. "Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms," Operations Research, INFORMS, vol. 67(1), pages 250-266, January.
    2. Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
    3. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    4. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    5. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    6. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    7. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    8. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    9. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    10. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
    11. Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
    12. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    13. Bolong Cheng & Arta Jamshidi & Warren Powell, 2015. "Optimal learning with a local parametric belief model," Journal of Global Optimization, Springer, vol. 63(2), pages 401-425, October.
    14. Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.
    15. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    16. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    17. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    19. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    20. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1850-1865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.