IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i1p250-266.html
   My bibliography  Save this article

Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms

Author

Listed:
  • Peter L. Salemi

    (The MITRE Corporation, McLean, Virginia 22102)

  • Eunhye Song

    (Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802)

  • Barry L. Nelson

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • Jeremy Staum

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

We consider optimizing the expected value of some performance measure of a dynamic stochastic simulation with a statistical guarantee for optimality when the decision variables are discrete , in particular, integer-ordered; the number of feasible solutions is large; and the model execution is too slow to simulate even a substantial fraction of them. Our goal is to create algorithms that stop searching when they can provide inference about the remaining optimality gap similar to the correct-selection guarantee of ranking and selection when it simulates all solutions. Further, our algorithm remains competitive with fixed-budget algorithms that search efficiently but do not provide such inference. To accomplish this we learn and exploit spatial relationships among the decision variables and objective function values using a Gaussian Markov random field (GMRF). Gaussian random fields on continuous domains are already used in deterministic and stochastic optimization because they facilitate the computation of measures, such as expected improvement, that balance exploration and exploitation. We show that GMRFs are particularly well suited to the discrete decision–variable problem, from both a modeling and a computational perspective. Specifically, GMRFs permit the definition of a sensible neighborhood structure, and they are defined by their precision matrices, which can be constructed to be sparse. Using this framework, we create both single and multiresolution algorithms, prove the asymptotic convergence of both, and evaluate their finite-time performance empirically.

Suggested Citation

  • Peter L. Salemi & Eunhye Song & Barry L. Nelson & Jeremy Staum, 2019. "Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms," Operations Research, INFORMS, vol. 67(1), pages 250-266, January.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:1:p:250-266
    DOI: 10.1287/opre.2018.1778
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1778
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    3. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    4. Ning Quan & Jun Yin & Szu Ng & Loo Lee, 2013. "Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 763-780.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
    2. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
    2. Jialei Wang & Scott C. Clark & Eric Liu & Peter I. Frazier, 2020. "Parallel Bayesian Global Optimization of Expensive Functions," Operations Research, INFORMS, vol. 68(6), pages 1850-1865, November.
    3. Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.
    4. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    5. Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
    6. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    7. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    8. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    9. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    10. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    11. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    12. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    13. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    14. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    15. Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Other publications TiSEM 6ac4e049-ad86-447f-aeec-a, Tilburg University, School of Economics and Management.
    16. Pedrielli, Giulia & Wang, Songhao & Ng, Szu Hui, 2020. "An extended Two-Stage Sequential Optimization approach: Properties and performance," European Journal of Operational Research, Elsevier, vol. 287(3), pages 929-945.
    17. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    18. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
    19. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    20. Bolong Cheng & Arta Jamshidi & Warren Powell, 2015. "Optimal learning with a local parametric belief model," Journal of Global Optimization, Springer, vol. 63(2), pages 401-425, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:1:p:250-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.