Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.2018.1778
Download full text from publisher
References listed on IDEAS
- D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
- Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
- Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
- Ning Quan & Jun Yin & Szu Ng & Loo Lee, 2013. "Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 763-780.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
- Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
- Jialei Wang & Scott C. Clark & Eric Liu & Peter I. Frazier, 2020. "Parallel Bayesian Global Optimization of Expensive Functions," Operations Research, INFORMS, vol. 68(6), pages 1850-1865, November.
- Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.
- Ehsan Mehdad & Jack P. C. Kleijnen, 2018.
"Efficient global optimisation for black-box simulation via sequential intrinsic Kriging,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 5e785713-146c-4e5b-b671-f, Tilburg University, School of Economics and Management.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2015-042, Tilburg University, Center for Economic Research.
- Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
- Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
- Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
- Mehdad, E. & Kleijnen, Jack P.C., 2014.
"Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging,"
Other publications TiSEM
8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2014-063, Tilburg University, Center for Economic Research.
- Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
- Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
- Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
- Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
- Kleijnen, Jack P.C., 2013.
"Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064),"
Other publications TiSEM
6ac4e049-ad86-447f-aeec-a, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.
- Pedrielli, Giulia & Wang, Songhao & Ng, Szu Hui, 2020. "An extended Two-Stage Sequential Optimization approach: Properties and performance," European Journal of Operational Research, Elsevier, vol. 287(3), pages 929-945.
- David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
- Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
- Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
- Bolong Cheng & Arta Jamshidi & Warren Powell, 2015. "Optimal learning with a local parametric belief model," Journal of Global Optimization, Springer, vol. 63(2), pages 401-425, October.
More about this item
Keywords
large-scale discrete optimization via simulation; inferential optimization; Gaussian Markov random fields;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:1:p:250-266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.