Conditional optimization of a noisy function using a kriging metamodel
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-018-0716-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
- D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
- Jones, Peter G. & Thornton, Philip K., 2013. "Generating downscaled weather data from a suite of climate models for agricultural modelling applications," Agricultural Systems, Elsevier, vol. 114(C), pages 1-5.
- Picheny, Victor & Ginsbourger, David, 2014. "Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1035-1053.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ehsan Mehdad & Jack P. C. Kleijnen, 2018.
"Efficient global optimisation for black-box simulation via sequential intrinsic Kriging,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 5e785713-146c-4e5b-b671-f, Tilburg University, School of Economics and Management.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2015-042, Tilburg University, Center for Economic Research.
- Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
- Mehdad, E. & Kleijnen, Jack P.C., 2014.
"Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging,"
Other publications TiSEM
8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2014-063, Tilburg University, Center for Economic Research.
- Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
- Youssef Diouane & Victor Picheny & Rodolophe Le Riche & Alexandre Scotto Di Perrotolo, 2023. "TREGO: a trust-region framework for efficient global optimization," Journal of Global Optimization, Springer, vol. 86(1), pages 1-23, May.
- Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
- Picheny, Victor & Ginsbourger, David, 2014. "Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1035-1053.
- Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
- Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
- Kleijnen, Jack P.C. & Mehdad, E., 2014.
"Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039),"
Discussion Paper
2014-012, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Other publications TiSEM 8a096696-f700-4cbe-9474-c, Tilburg University, School of Economics and Management.
- Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- G. Dosi & M. C. Pereira & M. E. Virgillito, 2018.
"On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis,"
Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
- Giovanni Dosi & Marcelo C. Pereira & Maria Enrica Virgillito, 2016. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," LEM Papers Series 2016/12, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
- Arvind Krishna & Huan Tran & Chaofan Huang & Rampi Ramprasad & V. Roshan Joseph, 2024. "Adaptive Exploration and Optimization of Materials Crystal Structures," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 68-83, April.
- Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
- Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015.
"Estimating the Variance of the Predictor in Stochastic Kriging,"
Other publications TiSEM
dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Discussion Paper 2015-041, Tilburg University, Center for Economic Research.
- Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
- Kleijnen, Jack P.C., 2009.
"Kriging metamodeling in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Other publications TiSEM 29d6926e-c381-4b58-ae58-8, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Discussion Paper 2007-13, Tilburg University, Center for Economic Research.
- Biewen, Martin & Kugler, Philipp, 2021.
"Two-stage least squares random forests with an application to Angrist and Evans (1998),"
Economics Letters, Elsevier, vol. 204(C).
- Biewen, Martin & Kugler, Philipp, 2020. "Two-Stage Least Squares Random Forests with an Application to Angrist and Evans (1998)," IZA Discussion Papers 13613, Institute of Labor Economics (IZA).
More about this item
Keywords
Crest line; Gaussian process; Sampling criterion; Sequential design; Noisy function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0716-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.