IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i2p305-324.html
   My bibliography  Save this article

Service Systems with Slowdowns: Potential Failures and Proposed Solutions

Author

Listed:
  • Jing Dong

    (Northwestern University, Evanston, Illinois 60208)

  • Pnina Feldman

    (University of California Berkeley, Berkeley, California 94720)

  • Galit B. Yom-Tov

    (Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa, 32000, Israel)

Abstract

Many service systems exhibit service slowdowns when the system is congested. Our goal in this paper is to investigate this phenomenon and its effect on system performance. We modify the Erlang-A model to account for service slowdowns and carry out the performance analysis in the quality- and efficiencydriven (QED) regime. We find that when the load sensitivity is low, the system can achieve QED performance, but the square-root staffing parameter requires an adjustment to achieve the same performance as an ordinary Erlang-A queue. When the load sensitivity is high, the system alternates randomly between a QED and an efficiency-driven (ED) regime performance levels, a phenomenon that we refer to as bistability . We analyze how the system scale and model parameters affect the bistability phenomenon and propose an admission control policy to avoid ED performance.

Suggested Citation

  • Jing Dong & Pnina Feldman & Galit B. Yom-Tov, 2015. "Service Systems with Slowdowns: Potential Failures and Proposed Solutions," Operations Research, INFORMS, vol. 63(2), pages 305-324, April.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:2:p:305-324
    DOI: 10.1287/opre.2015.1346
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1346
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ananda Weerasinghe, 2014. "Diffusion Approximations for G / M / n + GI Queues with State-Dependent Service Rates," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 207-228, February.
    2. Carri W. Chan & Galit Yom-Tov & Gabriel Escobar, 2014. "When to Use Speedup: An Examination of Service Systems with Returns," Operations Research, INFORMS, vol. 62(2), pages 462-482, April.
    3. Ety Zohar & Avishai Mandelbaum & Nahum Shimkin, 2002. "Adaptive Behavior of Impatient Customers in Tele-Queues: Theory and Empirical Support," Management Science, INFORMS, vol. 48(4), pages 566-583, April.
    4. den Hollander, F., 2004. "Metastability under stochastic dynamics," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 1-26, November.
    5. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    6. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    7. Ward Whitt, 2004. "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments," Management Science, INFORMS, vol. 50(10), pages 1449-1461, October.
    8. Mor Armony & Nahum Shimkin & Ward Whitt, 2009. "The Impact of Delay Announcements in Many-Server Queues with Abandonment," Operations Research, INFORMS, vol. 57(1), pages 66-81, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jim G. Dai & Pengyi Shi, 2021. "Recent Modeling and Analytical Advances in Hospital Inpatient Flow Management," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1838-1862, June.
    2. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    3. Galit B. Yom-Tov & Anat Rafaeli, 2022. "Integrating emotional load into service operations," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 565-567, April.
    4. D’Auria, Bernardo & Adan, Ivo J.B.F. & Bekker, René & Kulkarni, Vidyadhar, 2022. "An M/M/c queue with queueing-time dependent service rates," European Journal of Operational Research, Elsevier, vol. 299(2), pages 566-579.
    5. Masoud Kamalahmadi & Qiuping Yu & Yong-Pin Zhou, 2021. "Call to Duty: Just-in-Time Scheduling in a Restaurant Chain," Management Science, INFORMS, vol. 67(11), pages 6751-6781, November.
    6. Ibrahim, Rouba & L’Ecuyer, Pierre & Shen, Haipeng & Thiongane, Mamadou, 2016. "Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers," European Journal of Operational Research, Elsevier, vol. 250(2), pages 480-492.
    7. Jingqi Wang & Yong-Pin Zhou, 2018. "Impact of Queue Configuration on Service Time: Evidence from a Supermarket," Management Science, INFORMS, vol. 64(7), pages 3055-3075, July.
    8. Galit B. Yom-Tov & Carri W. Chan, 2021. "Balancing admission control, speedup, and waiting in service systems," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 163-219, February.
    9. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    10. Ingolfsson, Armann & Almehdawe, Eman & Pedram, Ali & Tran, Monica, 2020. "Comparison of fluid approximations for service systems with state-dependent service rates and return probabilities," European Journal of Operational Research, Elsevier, vol. 283(2), pages 562-575.
    11. Sezer Ülkü & Chris Hydock & Shiliang Cui, 2022. "Social Queues (Cues): Impact of Others’ Waiting in Line on One’s Service Time," Management Science, INFORMS, vol. 68(11), pages 7958-7976, November.
    12. Mohammad Delasay & Armann Ingolfsson & Bora Kolfal, 2016. "Modeling Load and Overwork Effects in Queueing Systems with Adaptive Service Rates," Operations Research, INFORMS, vol. 64(4), pages 867-885, August.
    13. Jing Dong, 2022. "Metastability in queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 413-415, April.
    14. Sezer Ülkü & Chris Hydock & Shiliang Cui, 2020. "Making the Wait Worthwhile: Experiments on the Effect of Queueing on Consumption," Management Science, INFORMS, vol. 66(3), pages 1149-1171, March.
    15. Carri W. Chan & Vivek F. Farias & Gabriel J. Escobar, 2017. "The Impact of Delays on Service Times in the Intensive Care Unit," Management Science, INFORMS, vol. 63(7), pages 2049-2072, July.
    16. Katsunobu Sasanuma, 2021. "Asymptotic Analysis for Systems with Deferred Abandonment," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    17. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    2. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    3. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    4. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    5. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    6. Pengfei Guo & Christopher S. Tang & Yulan Wang & Ming Zhao, 2019. "The Impact of Reimbursement Policy on Social Welfare, Revisit Rate, and Waiting Time in a Public Healthcare System: Fee-for-Service Versus Bundled Payment," Service Science, INFORMS, vol. 21(1), pages 154-170, January.
    7. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    8. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    9. Fengfeng Huang & Pengfei Guo & Yulan Wang, 2022. "Modeling Patients' Illness Perception and Equilibrium Analysis of Their Doctor Shopping Behavior," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1216-1234, March.
    10. Otis B. Jennings & Josh E. Reed, 2012. "An Overloaded Multiclass FIFO Queue with Abandonments," Operations Research, INFORMS, vol. 60(5), pages 1282-1295, October.
    11. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    12. Rouba Ibrahim & Ward Whitt, 2009. "Real-Time Delay Estimation in Overloaded Multiserver Queues with Abandonments," Management Science, INFORMS, vol. 55(10), pages 1729-1742, October.
    13. Michael F. Kamali & Tolga Tezcan & Ozlem Yildiz, 2019. "When to Use Provider Triage in Emergency Departments," Management Science, INFORMS, vol. 65(3), pages 1003-1019, March.
    14. Najiya Fatma & Varun Ramamohan, 2023. "Patient diversion using real-time delay predictions across healthcare facility networks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 437-476, June.
    15. Galit B. Yom-Tov & Carri W. Chan, 2021. "Balancing admission control, speedup, and waiting in service systems," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 163-219, February.
    16. Miao Yu & Yu Zhao & Chunguang Chang & Liangliang Sun, 2023. "Fluid models for customer service web chat systems with interactive automated service," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 572-598, June.
    17. Baris Ata & Peter W. Glynn & Xiaoshan Peng, 2017. "An equilibrium analysis of a discrete-time Markovian queue with endogenous abandonments," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 141-212, June.
    18. Jingqi Wang & Yong-Pin Zhou, 2018. "Impact of Queue Configuration on Service Time: Evidence from a Supermarket," Management Science, INFORMS, vol. 64(7), pages 3055-3075, July.
    19. Junfei Huang & Avishai Mandelbaum & Hanqin Zhang & Jiheng Zhang, 2017. "Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing," Operations Research, INFORMS, vol. 65(5), pages 1380-1397, October.
    20. Ingolfsson, Armann & Almehdawe, Eman & Pedram, Ali & Tran, Monica, 2020. "Comparison of fluid approximations for service systems with state-dependent service rates and return probabilities," European Journal of Operational Research, Elsevier, vol. 283(2), pages 562-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:2:p:305-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.