IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v65y2017i5p1380-1397.html
   My bibliography  Save this article

Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing

Author

Listed:
  • Junfei Huang

    (Department of Decision Sciences and Managerial Economics, CUHK Business School, The Chinese University of Hong Kong, Shatin, Hong Kong)

  • Avishai Mandelbaum

    (Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, 3200003 Haifa, Israel)

  • Hanqin Zhang

    (Department of Decision Sciences, NUS Business School, National University of Singapore, Singapore)

  • Jiheng Zhang

    (Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong)

Abstract

Data has revealed a noticeable impact of delay-time-related information on phone-customers; for example and somewhat surprisingly, delay announcements can abruptly increase the likelihood to abandon (hang up). Our starting point is that the latter phenomena can be used to support the control of queue lengths and delays. We do so by timing the announcements appropriately and determining the staffing levels accordingly. To this end, we model a service system as an overloaded GI / M / s + GI queue, in which we seek to minimize the number of servers, s, subject to quality-of-service constraints (e.g., fraction abandoning), while accounting for the instantaneous (hence discontinuous) impact of an announcement on the distribution (hazard rate) of customer patience. For tractability, our analysis is asymptotic as s increases indefinitely, and it is naturally efficiency-driven (namely the servers are highly busy, and hence essentially all customers are delayed in queue prior to service). This requires one to go beyond existing theory, which turns out to be too crude for our needs (e.g., it requires a continuous hazard rate of impatience and hence cannot be applied). We thus develop a refined process and steady-state models, and use them to solve our minimization problem and more. The value and accuracy of our models are demonstrated via extensive numerical experiments.

Suggested Citation

  • Junfei Huang & Avishai Mandelbaum & Hanqin Zhang & Jiheng Zhang, 2017. "Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing," Operations Research, INFORMS, vol. 65(5), pages 1380-1397, October.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:5:p:1380-1397
    DOI: 10.1287/opre.2017.1619
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2017.1619
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2017.1619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avishai Mandelbaum & Petar Momčilović, 2012. "Queues with Many Servers and Impatient Customers," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 41-65, February.
    2. Ward Whitt, 2006. "Fluid Models for Multiserver Queues with Abandonments," Operations Research, INFORMS, vol. 54(1), pages 37-54, February.
    3. Ward Whitt, 2004. "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments," Management Science, INFORMS, vol. 50(10), pages 1449-1461, October.
    4. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    5. Achal Bassamboo & Ramandeep S. Randhawa, 2010. "On the Accuracy of Fluid Models for Capacity Sizing in Queueing Systems with Impatient Customers," Operations Research, INFORMS, vol. 58(5), pages 1398-1413, October.
    6. Qiuping Yu & Gad Allon & Achal Bassamboo, 2017. "How Do Delay Announcements Shape Customer Behavior? An Empirical Study," Management Science, INFORMS, vol. 63(1), pages 1-20, January.
    7. J. E. Reed & Amy R. Ward, 2008. "Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 606-644, August.
    8. Gad Allon & Achal Bassamboo, 2011. "The Impact of Delaying the Delay Announcements," Operations Research, INFORMS, vol. 59(5), pages 1198-1210, October.
    9. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    10. Ohad Perry & Ward Whitt, 2009. "Responding to Unexpected Overloads in Large-Scale Service Systems," Management Science, INFORMS, vol. 55(8), pages 1353-1367, August.
    11. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    12. Oualid Jouini & Zeynep Aksin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Post-Print hal-00680769, HAL.
    13. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    14. Mor Armony & Nahum Shimkin & Ward Whitt, 2009. "The Impact of Delay Announcements in Many-Server Queues with Abandonment," Operations Research, INFORMS, vol. 57(1), pages 66-81, February.
    15. Avishai Mandelbaum & Sergey Zeltyn, 2009. "Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers," Operations Research, INFORMS, vol. 57(5), pages 1189-1205, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    2. Li Xiao & Susan H. Xu & David D. Yao & Hanqin Zhang, 2022. "Optimal staffing for ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 309-351, October.
    3. Liu, Zhongyi & Liu, Jingchen & Zhai, Xin & Wang, Guanying, 2019. "Police staffing and workload assignment in law enforcement using multi-server queueing models," European Journal of Operational Research, Elsevier, vol. 276(2), pages 614-625.
    4. Guodong Pang & Yuhang Zhou, 2018. "Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 1-25, February.
    5. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    6. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    7. A. Korhan Aras & Xinyun Chen & Yunan Liu, 2018. "Many-server Gaussian limits for overloaded non-Markovian queues with customer abandonment," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 81-125, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    2. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    3. Kraig Delana & Nicos Savva & Tolga Tezcan, 2021. "Proactive Customer Service: Operational Benefits and Economic Frictions," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 70-87, 1-2.
    4. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    5. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    6. Alexander L. Stolyar & Tolga Tezcan, 2011. "Shadow-Routing Based Control of Flexible Multiserver Pools in Overload," Operations Research, INFORMS, vol. 59(6), pages 1427-1444, December.
    7. Miao Yu & Yu Zhao & Chunguang Chang & Liangliang Sun, 2023. "Fluid models for customer service web chat systems with interactive automated service," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 572-598, June.
    8. A. Korhan Aras & Xinyun Chen & Yunan Liu, 2018. "Many-server Gaussian limits for overloaded non-Markovian queues with customer abandonment," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 81-125, June.
    9. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    10. Jouini, Oualid & Pot, Auke & Koole, Ger & Dallery, Yves, 2010. "Online scheduling policies for multiclass call centers with impatient customers," European Journal of Operational Research, Elsevier, vol. 207(1), pages 258-268, November.
    11. Bo Zhang & Johan S. H. van Leeuwaarden & Bert Zwart, 2012. "Staffing Call Centers with Impatient Customers: Refinements to Many-Server Asymptotics," Operations Research, INFORMS, vol. 60(2), pages 461-474, April.
    12. Tevfik Aktekin & Tahir Ekin, 2016. "Stochastic call center staffing with uncertain arrival, service and abandonment rates: A Bayesian perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 460-478, September.
    13. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    14. Rouba Ibrahim & Ward Whitt, 2009. "Real-Time Delay Estimation in Overloaded Multiserver Queues with Abandonments," Management Science, INFORMS, vol. 55(10), pages 1729-1742, October.
    15. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    16. Odysseas Kanavetas & Barış Balcıog̃lu, 2022. "The “Sensitive” Markovian queueing system and its application for a call center problem," Annals of Operations Research, Springer, vol. 317(2), pages 651-664, October.
    17. Erjie Ang & Sara Kwasnick & Mohsen Bayati & Erica L. Plambeck & Michael Aratow, 2016. "Accurate Emergency Department Wait Time Prediction," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 141-156, February.
    18. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    19. Zeynep Akşin & Baris Ata & Seyed Morteza Emadi & Che-Lin Su, 2017. "Impact of Delay Announcements in Call Centers: An Empirical Approach," Operations Research, INFORMS, vol. 65(1), pages 242-265, February.
    20. Jamol Pender & Richard Rand & Elizabeth Wesson, 2020. "A Stochastic Analysis of Queues with Customer Choice and Delayed Information," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1104-1126, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:5:p:1380-1397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.