IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v280y2019i1d10.1007_s10479-018-3032-7.html
   My bibliography  Save this article

Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic

Author

Listed:
  • Unai Aldasoro

    (University of the Basque Country (UPV/EHU))

  • María Merino

    (University of the Basque Country (UPV/EHU))

  • Gloria Pérez

    (University of the Basque Country (UPV/EHU))

Abstract

In this paper, we present a multistage time consistent Expected Conditional Risk Measure for minimizing a linear combination of the expected mean and the expected variance, so-called Expected Mean-Variance. The model is formulated as a multistage stochastic mixed-integer quadratic programming problem combining risk-sensitive cost and scenario analysis approaches. The proposed problem is solved by a matheuristic based on the Branch-and-Fix Coordination method. The multistage scenario cluster primal decomposition framework is extended to deal with large-scale quadratic optimization by means of stage-wise reformulation techniques. A specific case study in risk-sensitive production planning is used to illustrate that a remarkable decrease in the expected variance (risk cost) is obtained. A competitive behavior on the part of our methodology in terms of solution quality and computation time is shown when comparing with plain use of CPLEX in 150 benchmark instances, ranging up to 711,845 constraints and 193,000 binary variables.

Suggested Citation

  • Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
  • Handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-018-3032-7
    DOI: 10.1007/s10479-018-3032-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3032-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3032-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osorio, Maria A. & Gulpinar, Nalan & Rustem, Berc, 2008. "A mixed integer programming model for multistage mean-variance post-tax optimization," European Journal of Operational Research, Elsevier, vol. 185(2), pages 451-480, March.
    2. Francois V. Louveaux, 1980. "A Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment Problem," Operations Research, INFORMS, vol. 28(4), pages 889-902, August.
    3. Sauleh Siddiqui & Steven A Gabriel & Shapour Azarm, 2015. "Solving mixed-integer robust optimization problems with interval uncertainty using Benders decomposition," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 664-673, April.
    4. Maria Osorio & Nalan Gülpınar & Berç Rustem, 2008. "A general framework for multistage mean-variance post-tax optimization," Annals of Operations Research, Springer, vol. 157(1), pages 3-23, January.
    5. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2009. "BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 96-122, July.
    6. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    7. LOUVEAUX, François V., 1980. "A solution method for multistage stochastic programs with recourse with application to an energy investment problem," LIDAM Reprints CORE 415, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, December.
    9. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    10. Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
    11. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    12. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    13. Alonso-Ayuso, A. & Escudero, L. F. & Garín, A. & Ortuño, M. T. & Pérez, G., 2005. "On the product selection and plant dimensioning problem under uncertainty," Omega, Elsevier, vol. 33(4), pages 307-318, August.
    14. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    15. E. Mijangos, 2015. "An algorithm for two-stage stochastic mixed-integer nonlinear convex problems," Annals of Operations Research, Springer, vol. 235(1), pages 581-598, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Adam & Hamza Cherrat & Mohamed Houkari & Jean-Paul Laurent & Jean-Luc Prigent, 2022. "On the risk management of demand deposits: quadratic hedging of interest rate margins," Annals of Operations Research, Springer, vol. 313(2), pages 1319-1355, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    2. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    3. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    4. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    5. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    6. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    7. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    8. John R. Birge & Charles H. Rosa, 1996. "Incorporating Investment Uncertainty into Greenhouse Policy Models," The Energy Journal, , vol. 17(1), pages 79-90, January.
    9. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    10. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    11. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    12. Bülbül, Kerem & Noyan, Nilay & Erol, Hazal, 2021. "Multi-stage stochastic programming models for provisioning cloud computing resources," European Journal of Operational Research, Elsevier, vol. 288(3), pages 886-901.
    13. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    14. Laureano Escudero, 2009. "On a mixture of the fix-and-relax coordination and Lagrangian substitution schemes for multistage stochastic mixed integer programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 5-29, July.
    15. Xie, Fei & Huang, Yongxi, 2018. "A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 130-148.
    16. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    17. Cadarso, Luis & Escudero, Laureano F. & Marín, Angel, 2018. "On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem," European Journal of Operational Research, Elsevier, vol. 271(2), pages 577-593.
    18. Laureano F. Escudero & Juan F. Monge, 2018. "On capacity expansion planning under strategic and operational uncertainties based on stochastic dominance risk averse management," Computational Management Science, Springer, vol. 15(3), pages 479-500, October.
    19. Zhenfang Liu & Yang Zhou & Gordon Huang & Bin Luo, 2019. "Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    20. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-018-3032-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.