IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v233y2014i3p500-510.html
   My bibliography  Save this article

Global optimization of signomial geometric programming problems

Author

Listed:
  • Xu, Gongxian

Abstract

This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.

Suggested Citation

  • Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.
  • Handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:500-510
    DOI: 10.1016/j.ejor.2013.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713008394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Gongxian, 2013. "Steady-state optimization of biochemical systems through geometric programming," European Journal of Operational Research, Elsevier, vol. 225(1), pages 12-20.
    2. Mandal, Nirmal Kumar & Roy, Tapan Kumar & Maiti, Manoranjan, 2006. "Inventory model of deteriorated items with a constraint: A geometric programming approach," European Journal of Operational Research, Elsevier, vol. 173(1), pages 199-210, August.
    3. Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
    4. Tsai, Jung-Fa & Lin, Ming-Hua & Hu, Yi-Chung, 2007. "On generalized geometric programming problems with non-positive variables," European Journal of Operational Research, Elsevier, vol. 178(1), pages 10-19, April.
    5. Jung-Fa Tsai & Ming-Hua Lin, 2011. "An Efficient Global Approach for Posynomial Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 483-492, August.
    6. Barry R. Marks & Gordon P. Wright, 1978. "Technical Note—A General Inner Approximation Algorithm for Nonconvex Mathematical Programs," Operations Research, INFORMS, vol. 26(4), pages 681-683, August.
    7. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    8. Kim, DaeSoo & Lee, Won J., 1998. "Optimal joint pricing and lot sizing with fixed and variable capacity," European Journal of Operational Research, Elsevier, vol. 109(1), pages 212-227, August.
    9. Jung, Hoon & Klein, Cerry M., 2005. "Optimal inventory policies for an economic order quantity model with decreasing cost functions," European Journal of Operational Research, Elsevier, vol. 165(1), pages 108-126, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    2. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    3. Ata Allah Taleizadeh & Leila Aliabadi & Park Thaichon, 2022. "A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering," Operational Research, Springer, vol. 22(4), pages 4471-4516, September.
    4. Leyla Aliabadi & Seyed Hessameddin Zegordi & Ali Husseinzadeh Kashan & Mohammad Ali Rastegar, 2024. "A sustainable supply chain model for time-varying deteriorating items under the promotional cost-sharing policy and three-level trade credit financing," Operational Research, Springer, vol. 24(2), pages 1-59, June.
    5. Yiduo Zhan & Qipeng P. Zheng & Chung-Li Tseng & Eduardo L. Pasiliao, 2018. "An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming," Journal of Global Optimization, Springer, vol. 70(3), pages 579-599, March.
    6. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    7. Armin Jabbarzadeh & Leyla Aliabadi & Reza Yazdanparast, 2021. "Optimal payment time and replenishment decisions for retailer’s inventory system under trade credit and carbon emission constraints," Operational Research, Springer, vol. 21(1), pages 589-620, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiduo Zhan & Qipeng P. Zheng & Chung-Li Tseng & Eduardo L. Pasiliao, 2018. "An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming," Journal of Global Optimization, Springer, vol. 70(3), pages 579-599, March.
    2. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    3. Ata Allah Taleizadeh & Leila Aliabadi & Park Thaichon, 2022. "A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering," Operational Research, Springer, vol. 22(4), pages 4471-4516, September.
    4. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1075-1078, September.
    5. Lu, Hao-Chun, 2020. "Indicator of power convex and exponential transformations for solving nonlinear problems containing posynomial terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    7. Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2018. "Integrating geometric programming with rough set theory," Operational Research, Springer, vol. 18(1), pages 1-32, April.
    8. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 243-265, July.
    9. Hao-Chun Lu & Liming Yao, 2019. "Efficient Convexification Strategy for Generalized Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 226-234, April.
    10. Armin Jabbarzadeh & Leyla Aliabadi & Reza Yazdanparast, 2021. "Optimal payment time and replenishment decisions for retailer’s inventory system under trade credit and carbon emission constraints," Operational Research, Springer, vol. 21(1), pages 589-620, March.
    11. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    12. Seyed Reza Moosavi Tabatabaei & Seyed Jafar Sadjadi & Ahmad Makui, 2017. "Optimal pricing and marketing planning for deteriorating items," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    13. G. S. Mahapatra & T. K. Mandal, 2012. "Posynomial Parametric Geometric Programming with Interval Valued Coefficient," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 120-132, July.
    14. Esmaeili, M. & Aryanezhad, Mir-Bahador & Zeephongsekul, P., 2009. "A game theory approach in seller-buyer supply chain," European Journal of Operational Research, Elsevier, vol. 195(2), pages 442-448, June.
    15. Wasim Akram Mandal, 2021. "Weighted Tchebycheff Optimization Technique Under Uncertainty," Annals of Data Science, Springer, vol. 8(4), pages 709-731, December.
    16. Andreas Lundell & Anders Skjäl & Tapio Westerlund, 2013. "A reformulation framework for global optimization," Journal of Global Optimization, Springer, vol. 57(1), pages 115-141, September.
    17. Xu, Man & Tang, Wansheng & Zhao, Ruiqing, 2023. "Should reputable e-retailers undertake service activities along with sales?," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    18. Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
    19. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    20. Li, Xueping & Wang, Jiao & Sawhney, Rapinder, 2012. "Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 99-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:500-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.