IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i4p509-517.html
   My bibliography  Save this article

Broadcast Scheduling for Mobile Advertising

Author

Listed:
  • Bert de Reyck

    (London Business School, Regent's Park, London NW1 4SA, United Kingdom)

  • Zeger Degraeve

    (London Business School, Regent's Park, London NW1 4SA, United Kingdom)

Abstract

We describe a broadcast scheduling system developed for a precision marketing firm specialized in location-sensitive permission-based mobile advertising using SMS (Short Message Service) text messaging. Text messages containing advertisements were sent to registered customers when they were shopping in one of two shopping centers in the vicinity of London. The ads typically contained a limited-time promotional offer. The company's problem was deciding which ads to send out to which customers at what particular time, given a limited capacity of broadcast time slots, while maximizing customer response and revenues from retailers paying for each ad broadcast. We solved the problem using integer programming with an interface in Microsoft Excel. The system significantly reduced the time required to schedule the broadcasts, and resulted both in increased customer response and revenues.

Suggested Citation

  • Bert de Reyck & Zeger Degraeve, 2003. "Broadcast Scheduling for Mobile Advertising," Operations Research, INFORMS, vol. 51(4), pages 509-517, August.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:509-517
    DOI: 10.1287/opre.51.4.509.16104
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.4.509.16104
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.4.509.16104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Greg Shaffer & Z. John Zhang, 1995. "Competitive Coupon Targeting," Marketing Science, INFORMS, vol. 14(4), pages 395-416.
    3. Shaffer, G. & Zhang, Z.J., 1994. "Competitive Coupon Targeting," Papers 94-02, Michigan - Center for Research on Economic & Social Theory.
    4. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talla Nobibon, Fabrice & Leus, Roel & Spieksma, Frits C.R., 2011. "Optimization models for targeted offers in direct marketing: Exact and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 210(3), pages 670-683, May.
    2. Gerrard, Russell & Hiabu, Munir & Kyriakou, Ioannis & Nielsen, Jens Perch, 2019. "Communication and personal selection of pension saver’s financial risk," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1102-1111.
    3. Chen, Peng-Ting & Cheng, Joe Z. & Yu, Ya-Wen & Ju, Pei-Hung, 2014. "Mobile advertising setting analysis and its strategic implications," Technology in Society, Elsevier, vol. 39(C), pages 129-141.
    4. John Turner, 2012. "The Planning of Guaranteed Targeted Display Advertising," Operations Research, INFORMS, vol. 60(1), pages 18-33, February.
    5. De Reyck, Bert & Degraeve, Zeger, 2006. "MABS: Spreadsheet-based decision support for precision marketing," European Journal of Operational Research, Elsevier, vol. 171(3), pages 935-950, June.
    6. Tripathi, Arvind K. & Nair, Suresh K., 2007. "Narrowcasting of wireless advertising in malls," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1023-1038, November.
    7. Bert De Reyck & Ioannis Fragkos & Yael Grushka-Cockayne & Casey Lichtendahl & Hammond Guerin & Andrew Kritzer, 2017. "Vungle Inc. Improves Monetization Using Big Data Analytics," Interfaces, INFORMS, vol. 47(5), pages 454-466, October.
    8. Shinjini Pandey & Goutam Dutta & Harit Joshi, 2017. "Survey on Revenue Management in Media and Broadcasting," Interfaces, INFORMS, vol. 47(3), pages 195-213, June.
    9. Zhang, Jianqiang & He, Xiuli, 2019. "Targeted advertising by asymmetric firms," Omega, Elsevier, vol. 89(C), pages 136-150.
    10. Kumar, Ashish, 2021. "An empirical examination of the effects of design elements of email newsletters on consumers’ email responses and their purchase," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuxin & Zhang, Z. John, 2009. "Dynamic targeted pricing with strategic consumers," International Journal of Industrial Organization, Elsevier, vol. 27(1), pages 43-50, January.
    2. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    3. Jiwoong Shin & K. Sudhir, 2010. "A Customer Management Dilemma: When Is It Profitable to Reward One's Own Customers?," Marketing Science, INFORMS, vol. 29(4), pages 671-689, 07-08.
    4. Yuxin Chen & Chakravarthi Narasimhan & Z. John Zhang, 2001. "Individual Marketing with Imperfect Targetability," Marketing Science, INFORMS, vol. 20(1), pages 23-41, November.
    5. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    6. Vincent Conitzer & Curtis R. Taylor & Liad Wagman, 2012. "Hide and Seek: Costly Consumer Privacy in a Market with Repeat Purchases," Marketing Science, INFORMS, vol. 31(2), pages 277-292, March.
    7. Juanjuan Zhang, 2011. "The Perils of Behavior-Based Personalization," Marketing Science, INFORMS, vol. 30(1), pages 170-186, 01-02.
    8. Steven M. Shugan, 2002. "Editorial: Marketing Science, Models, Monopoly Models, and Why We Need Them," Marketing Science, INFORMS, vol. 21(3), pages 223-228.
    9. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2003. "Competitive Price Discrimination Strategies in a Vertical Channel Using Aggregate Retail Data," Management Science, INFORMS, vol. 49(9), pages 1121-1138, September.
    10. Alessandro Acquisti, 2014. "Inducing Customers to Try New Goods," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(2), pages 131-146, March.
    11. Jentzsch, Nicola & Sapi, Geza & Suleymanova, Irina, 2013. "Targeted pricing and customer data sharing among rivals," International Journal of Industrial Organization, Elsevier, vol. 31(2), pages 131-144.
    12. Dost, Florian & Geiger, Ingmar, 2017. "Value-based pricing in competitive situations with the help of multi-product price response maps," Journal of Business Research, Elsevier, vol. 76(C), pages 219-236.
    13. Stole, Lars A., 2007. "Price Discrimination and Competition," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 34, pages 2221-2299, Elsevier.
    14. Morten Hviid & Greg Shaffer, 2012. "Optimal low-price guarantees with anchoring," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 393-417, December.
    15. Greg Shaffer & Z. John Zhang, 2002. "Competitive One-to-One Promotions," Management Science, INFORMS, vol. 48(9), pages 1143-1160, September.
    16. Sapi, Geza & Suleymanova, Irina, 2013. "Consumer flexibility, data quality and targeted pricing," DICE Discussion Papers 117, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    17. Esteban, Lola & Hernández, José M., 2017. "Direct advertising and opt-in provisions: Policy and market implications," Information Economics and Policy, Elsevier, vol. 39(C), pages 15-25.
    18. Anderson, Simon & Baik, Alicia & Larson, Nathan, 2015. "Personalized pricing and advertising: An asymmetric equilibrium analysis," Games and Economic Behavior, Elsevier, vol. 92(C), pages 53-73.
    19. Zhang, Jianqiang, 2016. "The benefits of consumer rebates: A strategy for gray market deterrence," European Journal of Operational Research, Elsevier, vol. 251(2), pages 509-521.
    20. Walter W. Zhang & Sanjog Misra, 2022. "Coarse Personalization," Papers 2204.05793, arXiv.org, revised Aug 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:509-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.