IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v47y2017i5p454-466.html
   My bibliography  Save this article

Vungle Inc. Improves Monetization Using Big Data Analytics

Author

Listed:
  • Bert De Reyck

    (UCL School of Management, University College London, London WC1E 6BT, United Kingdom)

  • Ioannis Fragkos

    (Department of Technology and Operations Management, Rotterdam School of Management, Rotterdam 3062 PA, Netherlands)

  • Yael Grushka-Cockayne

    (Darden School of Business, University of Virginia, Charlottesville, Virginia 22903)

  • Casey Lichtendahl

    (Darden School of Business, University of Virginia, Charlottesville, Virginia 22903)

  • Hammond Guerin

    (Data Science Team, Vungle Inc., San Francisco, California 94107)

  • Andrew Kritzer

    (San Francisco, California)

Abstract

The advent of big data has created opportunities for firms to customize their products and services to unprecedented levels of granularity. Using big data to personalize an offering in real time, however, remains a major challenge. In the mobile advertising industry, once a customer enters the network, an ad-serving decision must be made in a matter of milliseconds. In this work, we describe the design and implementation of an ad-serving algorithm that incorporates machine-learning methods to make personalized ad-serving decisions within milliseconds. We developed this algorithm for Vungle Inc., one of the largest global mobile ad networks. Our approach also addresses other important issues that most ad networks face, such as user fatigue, budget restrictions, and campaign pacing. In an A/B test versus the company’s legacy algorithm, our algorithm generated a 23 percent increase in revenue per 1,000 impressions. Across the company’s network, this increase represents a $1 million increase in monthly revenue.

Suggested Citation

  • Bert De Reyck & Ioannis Fragkos & Yael Grushka-Cockayne & Casey Lichtendahl & Hammond Guerin & Andrew Kritzer, 2017. "Vungle Inc. Improves Monetization Using Big Data Analytics," Interfaces, INFORMS, vol. 47(5), pages 454-466, October.
  • Handle: RePEc:inm:orinte:v:47:y:2017:i:5:p:454-466
    DOI: 10.1287/inte.2017.0903
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2017.0903
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2017.0903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Bert de Reyck & Zeger Degraeve, 2003. "Broadcast Scheduling for Mobile Advertising," Operations Research, INFORMS, vol. 51(4), pages 509-517, August.
    3. Santiago R. Balseiro & Omar Besbes & Gabriel Y. Weintraub, 2015. "Repeated Auctions with Budgets in Ad Exchanges: Approximations and Design," Management Science, INFORMS, vol. 61(4), pages 864-884, April.
    4. Kostas Bimpikis & Asuman Ozdaglar & Ercan Yildiz, 2016. "Competitive Targeted Advertising Over Networks," Operations Research, INFORMS, vol. 64(3), pages 705-720, June.
    5. Andrews, Michelle & Goehring, Jody & Hui, Sam & Pancras, Joseph & Thornswood, Lance, 2016. "Mobile Promotions: A Framework and Research Priorities," Journal of Interactive Marketing, Elsevier, vol. 34(C), pages 15-24.
    6. Srinivas Bollapragada & Michael R. Bussieck & Suman Mallik, 2004. "Scheduling Commercial Videotapes in Broadcast Television," Operations Research, INFORMS, vol. 52(5), pages 679-689, October.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. John Turner, 2012. "The Planning of Guaranteed Targeted Display Advertising," Operations Research, INFORMS, vol. 60(1), pages 18-33, February.
    9. Dana G. Popescu & Pascale Crama, 2016. "Ad Revenue Optimization in Live Broadcasting," Management Science, INFORMS, vol. 62(4), pages 1145-1164, April.
    10. Omar Besbes & Yonatan Gur & Assaf Zeevi, 2016. "Optimization in Online Content Recommendation Services: Beyond Click-Through Rates," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 15-33, February.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinjini Pandey & Goutam Dutta & Harit Joshi, 2017. "Survey on Revenue Management in Media and Broadcasting," Interfaces, INFORMS, vol. 47(3), pages 195-213, June.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    6. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    7. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    8. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    9. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    10. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    11. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    12. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    13. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    14. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    15. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:47:y:2017:i:5:p:454-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.