Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1021850714072
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shinji Mizuno & Michael J. Todd & Yinyu Ye, 1993. "On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 964-981, November.
- John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
- J. L. Goffin & A. Haurie & J. P. Vial, 1992. "Decomposition and Nondifferentiable Optimization with the Projective Algorithm," Management Science, INFORMS, vol. 38(2), pages 284-302, February.
- Roy Marsten & Radhika Subramanian & Matthew Saltzman & Irvin Lustig & David Shanno, 1990. "Interior Point Methods for Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick!," Interfaces, INFORMS, vol. 20(4), pages 105-116, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
- Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Gondzio, J. & Sarkissian, R. & Vial, J.-P., 1997. "Using an interior point method for the master problem in a decomposition approach," European Journal of Operational Research, Elsevier, vol. 101(3), pages 577-587, September.
- Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
- Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
- Torres-Rojo, J. M., 2001. "Risk management in the design of a feeding ration: a portfolio theory approach," Agricultural Systems, Elsevier, vol. 68(1), pages 1-20, April.
- Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
- Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
- Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
- Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
- Frédéric Babonneau & Jean-Philippe Vial, 2008. "An Efficient Method to Compute Traffic Assignment Problems with Elastic Demands," Transportation Science, INFORMS, vol. 42(2), pages 249-260, May.
- Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
- Arjan Berkelaar & Cees Dert & Bart Oldenkamp & Shuzhong Zhang, 2002. "A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming," Operations Research, INFORMS, vol. 50(5), pages 904-915, October.
- J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
- M. Salahi & T. Terlaky, 2007. "Adaptive Large-Neighborhood Self-Regular Predictor-Corrector Interior-Point Methods for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 143-160, January.
- Haurie, A., 1995. "Time scale decomposition in production planning for unreliable flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 82(2), pages 339-358, April.
- Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
- Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
- Attila Bernáth & Tamás Király & Erika Kovács & Gergely Mádi-Nagy & Gyula Pap & Júlia Pap & Jácint Szabó & László Végh, 2013. "Algorithms for multiplayer multicommodity flow problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 699-712, December.
- Gondzio, J. & du Merle, O. & Sarkissian, R. & Vial, J. -P., 1996. "ACCPM -- A library for convex optimization based on an analytic center cutting plane method," European Journal of Operational Research, Elsevier, vol. 94(1), pages 206-211, October.
More about this item
Keywords
Large-scale linear programming; interior-point methods; Dantzig–Wolfe decomposition; algorithmic complexity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:102:y:1999:i:1:d:10.1023_a:1021850714072. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.