IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i2p235-245.html
   My bibliography  Save this article

Solving Large Nonconvex Water Resources Management Models Using Generalized Benders Decomposition

Author

Listed:
  • Ximing Cai

    (International Food Policy Research Institute, 2033 K. Washington D.C., 20006)

  • Daene C. McKinney

    (Department of Civil Engineering, College of Engineering, The University of Texas at Austin, Austin, Texas 78712)

  • Leon S. Lasdon

    (Department of Management Science and Information Systems, Graduate School of Business, The University of Texas at Austin, Austin, Texas 78712)

  • David W. Watkins

    (Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan 49931)

Abstract

Nonconvex nonlinear programming (NLP) problems arise frequently in water resources management, e.g., reservoir operations, groundwater remediation, and integrated water quantity and quality management. Such problems are usually large and sparse. Existing software for global optimization cannot cope with problems of this size, while current local sparse NLP solvers, e.g., MINOS (Murtagh and Saunders 1987), or CONOPT (Drud 1994) cannot guarantee a global solution. In this paper, we apply the Generalized Benders Decomposition (GBD) algorithm to two large nonconvex water resources models involving reservoir operations and water allocation in a river basin, using an approximation to the GBD cuts proposed by Floudas et al. (1989) and Floudas (1995). To ensure feasibility of the GBD subproblem, we relax its constraints by introducing elastic slack variables, penalizing these slacks in the objective function. This approach leads to solutions with excellent objective values in run times much less than the GAMS NLP solvers MINOS5 and CONOPT2, if the complicating variables are carefully selected. Using these solutions as initial points for MINOS5 or CONOPT2 often leads to further improvements.

Suggested Citation

  • Ximing Cai & Daene C. McKinney & Leon S. Lasdon & David W. Watkins, 2001. "Solving Large Nonconvex Water Resources Management Models Using Generalized Benders Decomposition," Operations Research, INFORMS, vol. 49(2), pages 235-245, April.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:2:p:235-245
    DOI: 10.1287/opre.49.2.235.13537
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.2.235.13537
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.2.235.13537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arne Stolbjerg Drud, 1994. "CONOPT—A Large-Scale GRG Code," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 207-216, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    2. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    3. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    4. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    5. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    6. Zheng, Hao & Feng, Suzhen & Chen, Cheng & Wang, Jinwen, 2022. "A new three-triangle based method to linearly concave hydropower output in long-term reservoir operation," Energy, Elsevier, vol. 250(C).
    7. Andrzej Karbowski, 2021. "Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions," Energies, MDPI, vol. 14(20), pages 1-18, October.
    8. Roberto Mínguez & Antonio Conejo & Enrique Castillo, 2013. "Optimal engineering design via Benders’ decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 273-293, November.
    9. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.
    10. Enrique Castillo & Roberto Mínguez & Antonio Conejo & Beatriz Pérez & Oscar Fontenla, 2013. "Estimating the parameters of a fatigue model using Benders’ decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 309-331, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    2. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    3. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    4. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    5. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2022. "Framework for embedding black-box simulation into mathematical programming via kriging surrogate model applied to natural gas liquefaction process optimization," Applied Energy, Elsevier, vol. 310(C).
    6. Durand-Lasserve, Olivier & Almutairi, Hossa & Aljarboua, Abdullah & Pierru, Axel & Pradhan, Shreekar & Murphy, Frederic, 2023. "Hard-linking a top-down economic model with a bottom-up energy system for an oil-exporting country with price controls," Energy, Elsevier, vol. 266(C).
    7. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    8. Marian Leimbach & Anselm Schultes & Lavinia Baumstark & Anastasis Giannousakis & Gunnar Luderer, 2017. "Solution algorithms for regional interactions in large-scale integrated assessment models of climate change," Annals of Operations Research, Springer, vol. 255(1), pages 29-45, August.
    9. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    10. Victor Reyes & Ignacio Araya, 2021. "AbsTaylor: upper bounding with inner regions in nonlinear continuous global optimization problems," Journal of Global Optimization, Springer, vol. 79(2), pages 413-429, February.
    11. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio, 2018. "Integration of distributed generation technologies on sustainable buildings," Applied Energy, Elsevier, vol. 224(C), pages 582-601.
    12. Cignitti, Stefano & Andreasen, Jesper G. & Haglind, Fredrik & Woodley, John M. & Abildskov, Jens, 2017. "Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery," Applied Energy, Elsevier, vol. 203(C), pages 442-453.
    13. Jianhui Xie & Qiwei Xie & Yongjun Li & Liang Liang, 2021. "Solving data envelopment analysis models with sum-of-fractional objectives: a global optimal approach based on the multiparametric disaggregation technique," Annals of Operations Research, Springer, vol. 304(1), pages 453-480, September.
    14. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    16. Chernonog, Tatyana & Goldberg, Noam, 2018. "On the multi-product newsvendor with bounded demand distributions," International Journal of Production Economics, Elsevier, vol. 203(C), pages 38-47.
    17. Klaus Mittenzwei, 2020. "Greenhouse Gas Emissions in Norwegian Agriculture: The Regional and Structural Dimension," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    18. Rutherford, Thomas F. & Böhringer, Christoph, 2021. "Will COVID-19 change the calculus of climate policy?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242432, Verein für Socialpolitik / German Economic Association.
    19. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    20. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:2:p:235-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.