IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v280y2019i1d10.1007_s10479-018-3011-z.html
   My bibliography  Save this article

Modeling uncertainty of expert elicitation for use in risk-based optimization

Author

Listed:
  • Michael D. Teter

    (Colorado School of Mines)

  • Johannes O. Royset

    (Naval Postgraduate School)

  • Alexandra M. Newman

    (Colorado School of Mines)

Abstract

Capital budgeting optimization models, used in a broad number of fields, require certain and uncertain parameters. Often times, elicited subject matter expert (SME) opinion is used as a parameter estimate, which does not always yield perfect information or correspond to a single value. Because of the uncertainty of the elicitation, the unknown true value of a parameter can be modeled as a random variable from a to-be-determined distribution. We estimate a univariate distribution using four different approaches, the Beta and Gaussian distributions, a standard Gaussian Kernel estimate, and an exponential epi-spline. We also capture dependencies within the parameters through three multivariate approaches: the multivariate Gaussian distribution, the multivariate Kernel and the multivariate exponential epi-spline. This is the first three-dimensional application of the latter. Sampling from the densities, we generate scenarios and implement a superquantile risk-based, capital budgeting optimization model. Numerical experiments contrast the differences between estimators, as well as their effects on an optimal solution. Our findings demonstrate that naively averaging the SME observations for use in optimization, rather than incorporating uncertainty, results in an overly optimistic portfolio. The flexibility of the exponential epi-spline estimator to fuse soft information with observed data produces reasonable density functions for univariate and multivariate random variables. Including a decision-maker’s risk-averseness through risk-based optimization delivers conservative results while incorporating the uncertainty of unknown parameters. We demonstrate a 20% improvement for this specific case when using our approach as opposed to the naive method.

Suggested Citation

  • Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
  • Handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-018-3011-z
    DOI: 10.1007/s10479-018-3011-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3011-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3011-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arne Stolbjerg Drud, 1994. "CONOPT—A Large-Scale GRG Code," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 207-216, May.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Lanah Evers & Twan Dollevoet & Ana Barros & Herman Monsuur, 2014. "Robust UAV mission planning," Annals of Operations Research, Springer, vol. 222(1), pages 293-315, November.
    4. Paul L. Ewing & William Tarantino & Gregory S. Parnell, 2006. "Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis," Decision Analysis, INFORMS, vol. 3(1), pages 33-49, March.
    5. Jeremy E. Oakley & Anthony O'Hagan, 2007. "Uncertainty in prior elicitations: a nonparametric approach," Biometrika, Biometrika Trust, vol. 94(2), pages 427-441.
    6. Gerald G. Brown & Robert F. Dell & Alexandra M. Newman, 2004. "Optimizing Military Capital Planning," Interfaces, INFORMS, vol. 34(6), pages 415-425, December.
    7. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    8. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    9. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    10. Ignacio Rios & Roger Wets & David Woodruff, 2015. "Multi-period forecasting and scenario generation with limited data," Computational Management Science, Springer, vol. 12(2), pages 267-295, April.
    11. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    12. Nima Safaei & Dragan Banjevic & Andrew Jardine, 2011. "Workforce-constrained maintenance scheduling for military aircraft fleet: a case study," Annals of Operations Research, Springer, vol. 186(1), pages 295-316, June.
    13. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    14. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milford, James & Henrion, Max & Hunter, Chad & Newes, Emily & Hughes, Caroline & Baldwin, Samuel F., 2022. "Energy sector portfolio analysis with uncertainty," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    2. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
    3. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    4. Marco Geraci & Alexander McLain, 2018. "Multiple Imputation for Bounded Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 919-940, December.
    5. Jensen, Are & Clausen, Tommy H., 2017. "Origins and emergence of exploration and exploitation capabilities in new technology-based firms," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 163-175.
    6. Ann-Marie Küchler & Dana Schultchen & Tim Dretzler & Morten Moshagen & David D. Ebert & Harald Baumeister, 2023. "A Three-Armed Randomized Controlled Trial to Evaluate the Effectiveness, Acceptance, and Negative Effects of StudiCare Mindfulness, an Internet- and Mobile-Based Intervention for College Students with," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    7. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    8. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    9. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    10. Williams, Randi M. & Zhang, Jing & Woodard, Nathaniel & Slade, Jimmie & Santos, Sherie Lou Zara & Knott, Cheryl L., 2020. "Development and validation of an instrument to assess institutionalization of health promotion in faith-based organizations," Evaluation and Program Planning, Elsevier, vol. 79(C).
    11. Mingyang Cai & Gerko Vink, 2022. "A note on imputing squares via polynomial combination approach," Computational Statistics, Springer, vol. 37(5), pages 2185-2201, November.
    12. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    13. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
    14. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    15. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    16. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
    17. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    18. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    19. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    20. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-018-3011-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.