IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i4p578-590.html
   My bibliography  Save this article

A Comparison of Formulations for the Single-Airport Ground-Holding Problem with Banking Constraints

Author

Listed:
  • Robert Hoffman

    (Metron Scientific Consulting, 11911 Freedom Dr. Suite 800, Reston, Virginia 20190)

  • Michael O. Ball

    (R.H. Smith School of Business and Institute for Systems Research, University of Maryland, College Park, Maryland 20742)

Abstract

Both the single-airport ground-holding problem (GH) and the multi-airport ground-holding problem can be extended by the addition of banking constraints to accommodate the hubbing operations of major airlines. These constraints enforce the desire of airlines to land certain groups of flights, called banks, within fixed time windows, thus preventing the propagation of delays throughout their entire operation. GH can be formulated as a transportation problem and readily solved. But in the presence of banking constraints, GH becomes a difficult integer programming problem. In this paper, we construct five different models of the single-airport ground-holding problem with banking constraints (GHB). The models are evaluated both computationally and analytically. For two of the models, we show that the banking constraints induce facets of the convex hull of the set of integer solutions. In addition, we explore a linear transformation of variables and a branching technique.

Suggested Citation

  • Robert Hoffman & Michael O. Ball, 2000. "A Comparison of Formulations for the Single-Airport Ground-Holding Problem with Banking Constraints," Operations Research, INFORMS, vol. 48(4), pages 578-590, August.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:4:p:578-590
    DOI: 10.1287/opre.48.4.578.12417
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.4.578.12417
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.4.578.12417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter B. M. Vranas & Dimitris Bertsimas & Amedeo R. Odoni, 1994. "Dynamic Ground-Holding Policies for a Network of Airports," Transportation Science, INFORMS, vol. 28(4), pages 275-291, November.
    2. Helen Wang, 1991. "Technical Note—A Dynamic Programming Framework for the Global Flow Control Problem in Air Traffic Management," Transportation Science, INFORMS, vol. 25(4), pages 308-313, November.
    3. Octavio Richetta, 1995. "Optimal Algorithms and a Remarkably Efficient Heuristic for the Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 43(5), pages 758-770, October.
    4. G. Andreatta & G. Romanin-Jacur, 1987. "Aircraft Flow Management under Congestion," Transportation Science, INFORMS, vol. 21(4), pages 249-253, November.
    5. Octavio Richetta & Amedeo R. Odoni, 1993. "Solving Optimally the Static Ground-Holding Policy Problem in Air Traffic Control," Transportation Science, INFORMS, vol. 27(3), pages 228-238, August.
    6. Mostafa Terrab & Amedeo R. Odoni, 1993. "Strategic Flow Management for Air Traffic Control," Operations Research, INFORMS, vol. 41(1), pages 138-152, February.
    7. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    2. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    3. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    4. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    5. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    6. Mukherjee, Avijit, 2004. "Dynamic Stochastic Optimization Models for Air Traffic Flow Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2vk8w6nc, Institute of Transportation Studies, UC Berkeley.
    7. Wei, P. & Cao, Y. & Sun, D., 2013. "Total unimodularity and decomposition method for large-scale air traffic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 1-16.
    8. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    9. Thomas Vossen & Michael Ball, 2006. "Optimization and mediated bartering models for ground delay programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 75-90, February.
    10. Michael O. Ball & Robert Hoffman & Amedeo R. Odoni & Ryan Rifkin, 2003. "A Stochastic Integer Program with Dual Network Structure and Its Application to the Ground-Holding Problem," Operations Research, INFORMS, vol. 51(1), pages 167-171, February.
    11. M. Selim Aktürk & Alper Atamtürk & Sinan Gürel, 2014. "Aircraft Rescheduling with Cruise Speed Control," Operations Research, INFORMS, vol. 62(4), pages 829-845, August.
    12. Sun, D. & Clinet, A. & Bayen, A.M., 2011. "A dual decomposition method for sector capacity constrained traffic flow optimization," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 880-902, July.
    13. Dell'Olmo, Paolo & Lulli, Guglielmo, 2003. "A new hierarchical architecture for Air Traffic Management: Optimisation of airway capacity in a Free Flight scenario," European Journal of Operational Research, Elsevier, vol. 144(1), pages 179-193, January.
    14. Balázs Kotnyek & Octavio Richetta, 2006. "Equitable Models for the Stochastic Ground-Holding Problem Under Collaborative Decision Making," Transportation Science, INFORMS, vol. 40(2), pages 133-146, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    2. Leal de Matos, Paula & Ormerod, Richard, 2000. "The application of operational research to European air traffic flow management - understanding the context," European Journal of Operational Research, Elsevier, vol. 123(1), pages 125-144, May.
    3. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    4. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    5. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    6. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    7. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    8. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    9. Churchill, Andrew M. & Lovell, David J., 2012. "Coordinated aviation network resource allocation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 19-33.
    10. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    11. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    12. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    13. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    14. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    15. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    16. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    17. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    18. Mukherjee, Avijit, 2004. "Dynamic Stochastic Optimization Models for Air Traffic Flow Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2vk8w6nc, Institute of Transportation Studies, UC Berkeley.
    19. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    20. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:4:p:578-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.