IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v21y1987i4p249-253.html
   My bibliography  Save this article

Aircraft Flow Management under Congestion

Author

Listed:
  • G. Andreatta

    (University of Padova, Padova, Italy)

  • G. Romanin-Jacur

    (University of Padova, Padova, Italy)

Abstract

Airport congestion is one of the main causes of costly aircraft delays. Sometimes costs may be reduced by imposing on some aircraft a delay at take off time in order to later avoid a more expensive airborne delay. The objective of the Flow Management Problem (F.M.P.) is to find an optimal delay strategy so that the total expected delay cost is minimized. In this paper an idealized and greatly simplified version of F.M.P. is investigated. In particular the airways network considered is star-shaped and congestion is allowed only in the central (arrival) airport. For this particular version a model is presented and a polynomial solution algorithm is derived. Landing priorities among aircraft can also influence the total expected delay cost: the optimal priority rule for our version of the F.M.P. is derived. Another algorithm is presented for the case where the number of aircraft not to be delayed on the ground is given a priori. Possible extensions of the proposed model to more realistic situations are mentioned.

Suggested Citation

  • G. Andreatta & G. Romanin-Jacur, 1987. "Aircraft Flow Management under Congestion," Transportation Science, INFORMS, vol. 21(4), pages 249-253, November.
  • Handle: RePEc:inm:ortrsc:v:21:y:1987:i:4:p:249-253
    DOI: 10.1287/trsc.21.4.249
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.21.4.249
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.21.4.249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    2. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    3. Jian Yang & Xiangtong Qi & Gang Yu, 2005. "Disruption management in production planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 420-442, August.
    4. Lorenzo Castelli & Raffaele Pesenti & Andrea Ranieri, 2009. "Allocating Air Traffic Flow Management Slots," Working Papers 191, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    5. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    6. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    7. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    8. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    9. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    10. Leal de Matos, Paula & Ormerod, Richard, 2000. "The application of operational research to European air traffic flow management - understanding the context," European Journal of Operational Research, Elsevier, vol. 123(1), pages 125-144, May.
    11. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    12. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    13. Robert Hoffman & Michael O. Ball, 2000. "A Comparison of Formulations for the Single-Airport Ground-Holding Problem with Banking Constraints," Operations Research, INFORMS, vol. 48(4), pages 578-590, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:21:y:1987:i:4:p:249-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.