IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i4p829-845.html
   My bibliography  Save this article

Aircraft Rescheduling with Cruise Speed Control

Author

Listed:
  • M. Selim Aktürk

    (Department of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey)

  • Alper Atamtürk

    (Industrial Engineering and Operations Research, University of California, Berkeley, California 94720)

  • Sinan Gürel

    (Department of Industrial Engineering, Middle East Technical University, 06800 Ankara, Turkey)

Abstract

Airline operations are subject to frequent disruptions typically due to unexpected aircraft maintenance requirements and undesirable weather conditions. Recovery from a disruption often involves propagating delays in downstream flights and increasing cruise stage speed when possible in an effort to contain the delays. However, there is a critical trade-off between fuel consumption (and its adverse impact on air quality and greenhouse gas emissions) and cruise speed. Here we consider delays caused by such disruptions and propose a flight rescheduling model that includes adjusting cruise stage speed on a set of affected and unaffected flights as well as swapping aircraft optimally.To the best of our knowledge, this is the first study in which the cruise speed is explicitly included as a decision variable into an airline recovery optimization model along with the environmental constraints and costs. The proposed model allows one to investigate the trade-off between flight delays and the cost of recovery. We show that the optimization approach leads to significant cost savings compared to the popular recovery method delay propagation.Flight time controllability, nonlinear delay, fuel burn and CO 2 emission cost functions, and binary aircraft swapping decisions complicate the aircraft recovery problem significantly. In order to mitigate the computational difficulty we utilize the recent advances in conic mixed integer programming and propose a strengthened formulation so that the nonlinear mixed integer recovery optimization model can be solved efficiently. Our computational tests on realistic cases indicate that the proposed model may be used by operations controllers to manage disruptions in real time in an optimal manner instead of relying on ad-hoc heuristic approaches.

Suggested Citation

  • M. Selim Aktürk & Alper Atamtürk & Sinan Gürel, 2014. "Aircraft Rescheduling with Cruise Speed Control," Operations Research, INFORMS, vol. 62(4), pages 829-845, August.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:4:p:829-845
    DOI: 10.1287/opre.2014.1279
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2014.1279
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2014.1279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gang Yu & Xiangtong Qi, 2004. "Disruption Management:Framework, Models and Applications," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 5632, August.
    2. Juan Pablo Vielma & Shabbir Ahmed & George L. Nemhauser, 2008. "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 438-450, August.
    3. Hansen, Mark M. & Gillen, David & Djafarian-Tehrani, Reza, 2001. "Aviation infrastructure performance and airline cost: a statistical cost estimation approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(1), pages 1-23, March.
    4. Andrew Schaefer & George Nemhauser, 2006. "Improving airline operational performance through schedule perturbation," Annals of Operations Research, Springer, vol. 144(1), pages 3-16, April.
    5. Hanif D. Sherali & Raymond W. Staats & Antonio A. Trani, 2006. "An Airspace-Planning and Collaborative Decision-Making Model: Part II---Cost Model, Data Considerations, and Computations," Transportation Science, INFORMS, vol. 40(2), pages 147-164, May.
    6. Kohl, Niklas & Larsen, Allan & Larsen, Jesper & Ross, Alex & Tiourine, Sergey, 2007. "Airline disruption management—Perspectives, experiences and outlook," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 149-162.
    7. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    8. Cook, Andrew & Tanner, Graham & Williams, Victoria & Meise, Gerhard, 2009. "Dynamic cost indexing – Managing airline delay costs," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 26-35.
    9. Alper Atamtürk & Gemma Berenguer & Zuo-Jun (Max) Shen, 2012. "A Conic Integer Programming Approach to Stochastic Joint Location-Inventory Problems," Operations Research, INFORMS, vol. 60(2), pages 366-381, April.
    10. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    11. Robert Hoffman & Michael O. Ball, 2000. "A Comparison of Formulations for the Single-Airport Ground-Holding Problem with Banking Constraints," Operations Research, INFORMS, vol. 48(4), pages 578-590, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwards, Holly A. & Dixon-Hardy, Darron & Wadud, Zia, 2016. "Aircraft cost index and the future of carbon emissions from air travel," Applied Energy, Elsevier, vol. 164(C), pages 553-562.
    2. Brueckner, Jan K. & Kahn, Matthew E. & Nickelsburg, Jerry, 2024. "How do airlines cut fuel usage, reducing their carbon emissions?," Economics of Transportation, Elsevier, vol. 38(C).
    3. Ross Milligan & Saioa Etxebarria & Tariq Muneer & Eulalia Jadraque Gago, 2019. "Driven Performance of Electric Vehicles in Edinburgh and Its Environs," Energies, MDPI, vol. 12(16), pages 1-22, August.
    4. Ma, Qiuzhuo & Song, Haiqing & Zhu, Wenbin, 2018. "Low-carbon airline fleet assignment: A compromise approach," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 86-102.
    5. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    3. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    4. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    5. Pedro Jose Gudiel Pineda & Chao-Che Hsu & James J. H. Liou & Huai-Wei Lo, 2018. "A Hybrid Model for Aircraft Type Determination Following Flight Cancellation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1147-1172, July.
    6. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Zhe Liang & Wanpracha Art Chaovalitwongse & Elsayed A. Elsayed, 2014. "Sequence Assignment Model for the Flight Conflict Resolution Problem," Transportation Science, INFORMS, vol. 48(3), pages 334-350, August.
    8. Şafak, Özge & Çavuş, Özlem & Selim Aktürk, M., 2018. "Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 39-67.
    9. Wei, P. & Cao, Y. & Sun, D., 2013. "Total unimodularity and decomposition method for large-scale air traffic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 1-16.
    10. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    11. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    12. Nianyi Wang & Huiling Wang & Shan Pei & Boyu Zhang, 2023. "A Data-Driven Heuristic Method for Irregular Flight Recovery," Mathematics, MDPI, vol. 11(11), pages 1-22, June.
    13. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    14. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.
    15. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    16. Leo Kroon & Gábor Maróti & Lars Nielsen, 2015. "Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows," Transportation Science, INFORMS, vol. 49(2), pages 165-184, May.
    17. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    18. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    19. Fatma Kılınç-Karzan, 2016. "On Minimal Valid Inequalities for Mixed Integer Conic Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 477-510, May.
    20. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:4:p:829-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.