IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2609471.html
   My bibliography  Save this article

Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization

Author

Listed:
  • Zhigang Li
  • Mingchuan Zhang
  • Junlong Zhu
  • Ruijuan Zheng
  • Qikun Zhang
  • Qingtao Wu

Abstract

We consider a stochastic continuous submodular huge-scale optimization problem, which arises naturally in many applications such as machine learning. Due to high-dimensional data, the computation of the whole gradient vector can become prohibitively expensive. To reduce the complexity and memory requirements, we propose a stochastic block-coordinate gradient projection algorithm for maximizing continuous submodular functions, which chooses a random subset of gradient vector and updates the estimates along the positive gradient direction. We prove that the estimates of all nodes generated by the algorithm converge to some stationary points with probability 1. Moreover, we show that the proposed algorithm achieves the tight approximation guarantee after iterations for DR-submodular functions by choosing appropriate step sizes. Furthermore, we also show that the algorithm achieves the tight approximation guarantee after iterations for weakly DR-submodular functions with parameter by choosing diminishing step sizes.

Suggested Citation

  • Zhigang Li & Mingchuan Zhang & Junlong Zhu & Ruijuan Zheng & Qikun Zhang & Qingtao Wu, 2018. "Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization," Complexity, Hindawi, vol. 2018, pages 1-11, December.
  • Handle: RePEc:hin:complx:2609471
    DOI: 10.1155/2018/2609471
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2609471.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2609471.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2609471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    2. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    4. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    2. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    3. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2017. "Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 767-779, November.
    4. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    5. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
    6. Hao-Hsiang Wu & Simge Küçükyavuz, 2018. "A two-stage stochastic programming approach for influence maximization in social networks," Computational Optimization and Applications, Springer, vol. 69(3), pages 563-595, April.
    7. Niv Buchbinder & Moran Feldman, 2019. "Constrained Submodular Maximization via a Nonsymmetric Technique," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 988-1005, August.
    8. Hao Shen & Yong Liang & Zuo-Jun Max Shen, 2021. "Reliable Hub Location Model for Air Transportation Networks Under Random Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 388-406, March.
    9. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    10. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    11. Tanınmış, Kübra & Aras, Necati & Altınel, I.K., 2019. "Influence maximization with deactivation in social networks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 105-119.
    12. Kurt Spielberg, 2007. "IP over 40+ Years at IBM Scientific Centers and Marketing," Annals of Operations Research, Springer, vol. 149(1), pages 195-208, February.
    13. Niv Buchbinder & Moran Feldman & Roy Schwartz, 2017. "Comparing Apples and Oranges: Query Trade-off in Submodular Maximization," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 308-329, May.
    14. Ariah Klages-Mundt & Andreea Minca, 2021. "Optimal Intervention in Economic Networks using Influence Maximization Methods," Papers 2102.01800, arXiv.org, revised Mar 2023.
    15. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    16. George Nemhauser, 2007. "Hooked on IP," Annals of Operations Research, Springer, vol. 149(1), pages 157-161, February.
    17. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    18. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    19. Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
    20. Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2609471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.