IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i4p1210-1232.html
   My bibliography  Save this article

Nonconvex Lagrangian-Based Optimization: Monitoring Schemes and Global Convergence

Author

Listed:
  • Jérôme Bolte

    (Toulouse School of Economics, Université Toulouse Capitole, 31015 Toulouse, France)

  • Shoham Sabach

    (Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 3200003, Israel)

  • Marc Teboulle

    (School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel)

Abstract

We introduce a novel approach addressing global analysis of a difficult class of nonconvex-nonsmooth optimization problems within the important framework of Lagrangian-based methods. This genuine nonlinear class captures many problems in modern disparate fields of applications. It features complex geometries, qualification conditions, and other regularity properties do not hold everywhere. To address these issues, we work along several research lines to develop an original general Lagrangian methodology, which can deal, all at once, with the above obstacles. A first innovative feature of our approach is to introduce the concept of Lagrangian sequences for a broad class of algorithms. Central to this methodology is the idea of turning an arbitrary descent method into a multiplier method. Secondly, we provide these methods with a transitional regime allowing us to identify in finitely many steps a zone where we can tune the step-sizes of the algorithm for the final converging regime. Then, despite the min-max nature of Lagrangian methods, using an original Lyapunov method we prove that each bounded sequence generated by the resulting monitoring schemes are globally convergent to a critical point for some fundamental Lagrangian-based methods in the broad semialgebraic setting, which to the best of our knowledge, are the first of this kind.

Suggested Citation

  • Jérôme Bolte & Shoham Sabach & Marc Teboulle, 2018. "Nonconvex Lagrangian-Based Optimization: Monitoring Schemes and Global Convergence," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1210-1232, November.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1210-1232
    DOI: 10.1287/moor.2017.0900
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0900
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
    2. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    3. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    2. Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
    3. Eyal Cohen & Nadav Hallak & Marc Teboulle, 2022. "A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 324-353, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    2. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    3. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    4. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    5. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    6. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    7. R. S. Burachik & S. Scheimberg & B. F. Svaiter, 2001. "Robustness of the Hybrid Extragradient Proximal-Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 117-136, October.
    8. Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 0. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
    9. A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
    10. M. Kyono & M. Fukushima, 2000. "Nonlinear Proximal Decomposition Method for Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 357-372, August.
    11. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    12. J. R. Birge & L. Qi & Z. Wei, 1998. "Convergence Analysis of Some Methods for Minimizing a Nonsmooth Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 357-383, May.
    13. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    14. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    15. N. El Farouq & G. Cohen, 1998. "Progressive Regularization of Variational Inequalities and Decomposition Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 407-433, May.
    16. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    17. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    18. A. Kaplan & R. Tichatschke, 1998. "Proximal Methods in View of Interior-Point Strategies," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 399-429, August.
    19. R. P. Agarwal & R. U. Verma, 2009. "Role of Relative A-Maximal Monotonicity in Overrelaxed Proximal-Point Algorithms with Applications," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 1-15, October.
    20. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1210-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.