IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p407-d1577478.html
   My bibliography  Save this article

The Proximal Alternating Direction Method of Multipliers for a Class of Nonlinear Constrained Optimization Problems

Author

Listed:
  • Ruiling Luo

    (College of Science, University of Shanghai for Science and Technology, No. 516, Jun Gong Road, Shanghai 200093, China)

  • Zhensheng Yu

    (College of Science, University of Shanghai for Science and Technology, No. 516, Jun Gong Road, Shanghai 200093, China)

Abstract

This paper presents a class of proximal alternating direction multiplier methods for solving nonconvex, nonsmooth optimization problems with nonlinear coupled constraints. The key feature of the proposed algorithm is that we use a linearized proximal technique to update the primary variables, followed by updating the dual variables using a discounting approach. This approach eliminates the requirement for an additional proxy function and then simplifies the optimization process. In addition, the algorithm maintains fixed parameter selection throughout the update process, removing the requirement to adjust parameters to ensure the decreasing nature of the generated sequence. Building on this framework, we establish a Lyapunov function with sufficient decrease and a lower bound, which is essential for analyzing the convergence properties of the algorithm. We rigorously prove both the subsequence convergence and the global convergence of the algorithm and ensure its robustness and effectiveness in solving complex optimization problems. Our paper provides a solid theoretical foundation for the practical application of this method in solving nonconvex optimization problems with nonlinear coupled constraints.

Suggested Citation

  • Ruiling Luo & Zhensheng Yu, 2025. "The Proximal Alternating Direction Method of Multipliers for a Class of Nonlinear Constrained Optimization Problems," Mathematics, MDPI, vol. 13(3), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:407-:d:1577478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jérôme Bolte & Shoham Sabach & Marc Teboulle, 2018. "Nonconvex Lagrangian-Based Optimization: Monitoring Schemes and Global Convergence," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1210-1232, November.
    2. repec:dau:papers:123456789/4688 is not listed on IDEAS
    3. Xingju Cai & Deren Han & Xiaoming Yuan, 2017. "On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function," Computational Optimization and Applications, Springer, vol. 66(1), pages 39-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    2. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    3. Eyal Cohen & Nadav Hallak & Marc Teboulle, 2022. "A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 324-353, June.
    4. Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
    5. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    6. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    7. Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
    8. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    9. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    10. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Bin Gao & Feng Ma, 2018. "Symmetric Alternating Direction Method with Indefinite Proximal Regularization for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 178-204, January.
    12. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    13. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:407-:d:1577478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.