A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-023-00467-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
- A. S. Lewis, 1996. "Derivatives of Spectral Functions," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 576-588, August.
- Yong-Jin Liu & Jing Yu, 2022. "A Semismooth Newton-based Augmented Lagrangian Algorithm for Density Matrix Least Squares Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 749-779, December.
- Xin Chen & Houduo Qi & Liqun Qi & Kok-Lay Teo, 2004. "Smooth Convex Approximation to the Maximum Eigenvalue Function," Journal of Global Optimization, Springer, vol. 30(2), pages 253-270, November.
- R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yong-Jin & Wan, Yuqi & Lin, Lanyu, 2024. "An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem," Applied Mathematics and Computation, Elsevier, vol. 475(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong-Jin Liu & Jing Yu, 2022. "A Semismooth Newton-based Augmented Lagrangian Algorithm for Density Matrix Least Squares Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 749-779, December.
- Liu, Yong-Jin & Wan, Yuqi & Lin, Lanyu, 2024. "An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem," Applied Mathematics and Computation, Elsevier, vol. 475(C).
- Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
- Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
- Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
- Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
- Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
- Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
- Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
- Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
- Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
- Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
- Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
- Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
- Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
- Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
- Lewis, R.M. & Trosset, M.W., 2006. "Sensitivity analysis of the strain criterion for multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 135-153, January.
- Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
- Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
- Xiaojiao Tong & Liqun Qi & Soon-Yi Wu & Felix Wu, 2012. "A smoothing SQP method for nonlinear programs with stability constraints arising from power systems," Computational Optimization and Applications, Springer, vol. 51(1), pages 175-197, January.
More about this item
Keywords
Maximum eigenvalue problem; Proximal point algorithm; Semismooth Newton algorithm; Density matrix; Quadratic growth condition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:2:d:10.1007_s10589-023-00467-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.