IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v177y2024ics0148296324001590.html
   My bibliography  Save this article

Unstructured data research in business: Toward a structured approach

Author

Listed:
  • de Haan, Evert
  • Padigar, Manjunath
  • El Kihal, Siham
  • Kübler, Raoul
  • Wieringa, Jaap E.

Abstract

Despite the unprecedented growth in both the volume of unstructured data (UD) and the associated methodological sophistication, there is a growing managerial need for a structured view of how to select data sources and methods given a specific use case or scenario. Handling UD is typically resource intensive, requires many steps, and involves high uncertainty, but UD can contain rich information not found in structured data. Recognizing the gap in clear guidelines for leveraging UD in managerial decision-making, we develop a systematic three-step approach: (1) problem identification, (2) solutions development, and (3) problem resolution. Building on organizational learning theory, we propose a solutions development framework with four conceptually distinct uses of UD based on two dimensions: organizational learning goals (exploration and exploitation) and environmental scanning scope (internal and external data sources). Finally, we discuss implications for practitioners and outline key focus areas for future research directions.

Suggested Citation

  • de Haan, Evert & Padigar, Manjunath & El Kihal, Siham & Kübler, Raoul & Wieringa, Jaap E., 2024. "Unstructured data research in business: Toward a structured approach," Journal of Business Research, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:jbrese:v:177:y:2024:i:c:s0148296324001590
    DOI: 10.1016/j.jbusres.2024.114655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324001590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.114655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    2. Praveen K. Kopalle & V. Kumar & Mohan Subramaniam, 2020. "How legacy firms can embrace the digital ecosystem via digital customer orientation," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 114-131, January.
    3. S. Arunachalam & S. Cem Bahadir & Sundar G. Bharadwaj & Rodrigo Guesalaga, 2020. "New product introductions for low-income consumers in emerging markets," Journal of the Academy of Marketing Science, Springer, vol. 48(5), pages 914-940, September.
    4. Ilhan, Behice Ece & Kübler, Raoul V. & Pauwels, Koen H., 2018. "Battle of the Brand Fans: Impact of Brand Attack and Defense on Social Media," Journal of Interactive Marketing, Elsevier, vol. 43(C), pages 33-51.
    5. Sherry He & Brett Hollenbeck & Davide Proserpio, 2022. "The Market for Fake Reviews," Marketing Science, INFORMS, vol. 41(5), pages 896-921, September.
    6. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    7. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    8. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    9. Wai Fong Boh & Cheng‐Jen Huang & Anne Wu, 2020. "Investor experience and innovation performance: The mediating role of external cooperation," Strategic Management Journal, Wiley Blackwell, vol. 41(1), pages 124-151, January.
    10. Kübler, Raoul V. & Colicev, Anatoli & Pauwels, Koen H., 2020. "Social Media's Impact on the Consumer Mindset: When to Use Which Sentiment Extraction Tool?," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 136-155.
    11. Jessen L. Hobson & William J. Mayew & Mohan Venkatachalam, 2012. "Analyzing Speech to Detect Financial Misreporting," Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 349-392, May.
    12. Verhoef, Peter C. & Broekhuizen, Thijs & Bart, Yakov & Bhattacharya, Abhi & Qi Dong, John & Fabian, Nicolai & Haenlein, Michael, 2021. "Digital transformation: A multidisciplinary reflection and research agenda," Journal of Business Research, Elsevier, vol. 122(C), pages 889-901.
    13. Shasha Lu & Li Xiao & Min Ding, 2016. "A Video-Based Automated Recommender (VAR) System for Garments," Marketing Science, INFORMS, vol. 35(3), pages 484-510, May.
    14. Garrett P. Sonnier & Leigh McAlister & Oliver J. Rutz, 2011. "A Dynamic Model of the Effect of Online Communications on Firm Sales," Marketing Science, INFORMS, vol. 30(4), pages 702-716, July.
    15. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    16. Florian Ederer & Weicheng Min, 2021. "Bayesian Persuasion with Lie Detection," Cowles Foundation Discussion Papers 2272, Cowles Foundation for Research in Economics, Yale University.
    17. Schwenzow, Jasper & Hartmann, Jochen & Schikowsky, Amos & Heitmann, Mark, 2021. "Understanding videos at scale: How to extract insights for business research," Journal of Business Research, Elsevier, vol. 123(C), pages 367-379.
    18. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    19. Hartmann, Jochen & Heitmann, Mark & Siebert, Christian & Schamp, Christina, 2023. "More than a Feeling: Accuracy and Application of Sentiment Analysis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 75-87.
    20. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    21. George P. Huber, 1991. "Organizational Learning: The Contributing Processes and the Literatures," Organization Science, INFORMS, vol. 2(1), pages 88-115, February.
    22. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Philip Gylfe & Henrika Franck & Curtis Lebaron & Saku Mantere, 2016. "Video methods in strategy research: Focusing on embodied cognition," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 133-148, January.
    23. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kübler, Raoul V. & Seggie, Steven H., 2024. "The impact of Covid-19 on how core and peripheral service satisfaction impacts customer satisfaction," Journal of Business Research, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Gong & Yunchan Zhu & Rizwan Ali & Ruijin Guo, 2019. "Capturing Associations and Sustainable Competitiveness of Brands from Social Tags," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    2. Uttara Ananthakrishnan & Davide Proserpio & Siddhartha Sharma, 2023. "I Hear You: Does Quality Improve with Customer Voice?," Marketing Science, INFORMS, vol. 42(6), pages 1143-1161, November.
    3. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    4. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    5. Jifeng Mu & Jonathan Z. Zhang, 2021. "Seller marketing capability, brand reputation, and consumer journeys on e-commerce platforms," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 994-1020, September.
    6. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    7. Schwenzow, Jasper & Hartmann, Jochen & Schikowsky, Amos & Heitmann, Mark, 2021. "Understanding videos at scale: How to extract insights for business research," Journal of Business Research, Elsevier, vol. 123(C), pages 367-379.
    8. Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
    9. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    10. Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
    11. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    12. Zelin Zhang & Kejia Yang & Jonathan Z. Zhang & Robert W. Palmatier, 2023. "Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach," Management Science, INFORMS, vol. 69(4), pages 2339-2360, April.
    13. Katsumata, Sotaro & Nishimoto, Akihiro & Kannan, P.K., 2023. "Brand competitiveness and resilience to exogenous shock: Usage of smartphone apps during the COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    14. Sylvie Héroux & Mélanie Roussy, 2020. "Three cases of compliance with governance regulation: an organizational learning perspective," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 24(2), pages 449-479, June.
    15. Nicolai J. Foss, 1996. "Firms, Incomplete Contracts and Organizational Learning," DRUID Working Papers 96-2, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    16. Eelke Wiersma, 2007. "Conditions That Shape the Learning Curve: Factors That Increase the Ability and Opportunity to Learn," Management Science, INFORMS, vol. 53(12), pages 1903-1915, December.
    17. Sirén, Charlotta & Kohtamäki, Marko, 2016. "Stretching strategic learning to the limit: The interaction between strategic planning and learning," Journal of Business Research, Elsevier, vol. 69(2), pages 653-663.
    18. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    19. Daniela P. Blettner & Zi-Lin He & Songcui Hu & Richard A. Bettis, 2015. "Adaptive aspirations and performance heterogeneity: Attention allocation among multiple reference points," Strategic Management Journal, Wiley Blackwell, vol. 36(7), pages 987-1005, July.
    20. Mohammadi, Ali & Broström, Anders & Franzoni, Chiara, 2015. "Work Force Composition and Innovation: How Diversity in Employees’ Ethnical and Disciplinary Backgrounds Facilitates Knowledge Re-combination," Working Paper Series in Economics and Institutions of Innovation 413, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:177:y:2024:i:c:s0148296324001590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.