IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v64y2018i3p1271-1290.html
   My bibliography  Save this article

Randomized Markdowns and Online Monitoring

Author

Listed:
  • Ken Moon

    (The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

  • Kostas Bimpikis

    (Graduate School of Business, Stanford University, Stanford, California 94305)

  • Haim Mendelson

    (Graduate School of Business, Stanford University, Stanford, California 94305)

Abstract

Online retail reduces the costs of obtaining information about a product’s price and availability and of flexibly timing a purchase. Consequently, consumers can strategically time their purchases, weighing the costs of monitoring and the risk of inventory depletion against prospectively lower prices. At the same time, firms can observe and exploit their customers’ monitoring behavior. Using a data set tracking customers of a North American specialty retail brand, we present empirical evidence that monitoring products online is associated with successfully obtaining discounts. We develop a structural model of consumers’ dynamic monitoring to find substantial heterogeneity, with consumers’ opportunity costs for an online visit ranging from $2 to $25 in inverse relation to their price elasticities. Our estimation results have important implications for retail operations. The randomized markdown policy benefits retailers by combining price commitment with the exploitation of heterogeneity in consumers’ monitoring costs. We estimate that the retailer’s profit under randomized markdowns is 81% higher than from subgame-perfect, state-contingent pricing, because the retailer need not limit its inventory to credibly limit markdowns, which permits its jointly optimal inventory stock to expand by 133%. The welfare gain from these larger inventories splits nearly equally into retailer profit and consumer surplus. We also discuss targeting customers with price promotions using their online histories and the implications of reducing consumers’ monitoring costs.

Suggested Citation

  • Ken Moon & Kostas Bimpikis & Haim Mendelson, 2018. "Randomized Markdowns and Online Monitoring," Management Science, INFORMS, vol. 64(3), pages 1271-1290, March.
  • Handle: RePEc:inm:ormnsc:v:64:y:2018:i:3:p:1271-1290
    DOI: 10.1287/mnsc.2016.2661
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2016.2661
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2016.2661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Yuriy Gorodnichenko & Viacheslav Sheremirov & Oleksandr Talavera, 2018. "Price Setting in Online Markets: Does IT Click?," Journal of the European Economic Association, European Economic Association, vol. 16(6), pages 1764-1811.
    3. Varian, Hal R, 1980. "A Model of Sales," American Economic Review, American Economic Association, vol. 70(4), pages 651-659, September.
    4. Johannes Hörner & Larry Samuelson, 2011. "Managing Strategic Buyers," Journal of Political Economy, University of Chicago Press, vol. 119(3), pages 379-425.
    5. Qian Liu & Garrett J. van Ryzin, 2008. "Strategic Capacity Rationing to Induce Early Purchases," Management Science, INFORMS, vol. 54(6), pages 1115-1131, June.
    6. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. R. Preston Mcafee & Thomas Wiseman, 2008. "Capacity Choice Counters the Coase Conjecture," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(1), pages 317-331.
    9. Ulrich Doraszelski & Kenneth L. Judd, 2012. "Avoiding the curse of dimensionality in dynamic stochastic games," Quantitative Economics, Econometric Society, vol. 3(1), pages 53-93, March.
    10. Terry A. Taylor, 2006. "Sale Timing in a Supply Chain: When to Sell to the Retailer," Manufacturing & Service Operations Management, INFORMS, vol. 8(1), pages 23-42, November.
    11. Marcelo Olivares & Christian Terwiesch & Lydia Cassorla, 2008. "Structural Estimation of the Newsvendor Model: An Application to Reserving Operating Room Time," Management Science, INFORMS, vol. 54(1), pages 41-55, January.
    12. Joel Sobel, 1984. "The Timing of Sales," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(3), pages 353-368.
    13. Igal Hendel & Aviv Nevo, 2013. "Intertemporal Price Discrimination in Storable Goods Markets," American Economic Review, American Economic Association, vol. 103(7), pages 2722-2751, December.
    14. Harikesh Nair, 2007. "Intertemporal price discrimination with forward-looking consumers: Application to the US market for console video-games," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 239-292, September.
    15. Yossi Aviv & Yuri Levin & Mikhail Nediak, 2009. "Counteracting Strategic Consumer Behavior in Dynamic Pricing Systems," International Series in Operations Research & Management Science, in: Christopher S. Tang & Serguei Netessine (ed.), Consumer-Driven Demand and Operations Management Models, edition 1, chapter 0, pages 323-352, Springer.
    16. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    17. Omar Besbes & Ilan Lobel, 2015. "Intertemporal Price Discrimination: Structure and Computation of Optimal Policies," Management Science, INFORMS, vol. 61(1), pages 92-110, January.
    18. Judith Chevalier & Austan Goolsbee, 2009. "Are Durable Goods Consumers Forward-Looking? Evidence from College Textbooks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1853-1884.
    19. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    20. David Besanko & Wayne L. Winston, 1990. "Optimal Price Skimming by a Monopolist Facing Rational Consumers," Management Science, INFORMS, vol. 36(5), pages 555-567, May.
    21. Yossi Aviv & Amit Pazgal, 2008. "Optimal Pricing of Seasonal Products in the Presence of Forward-Looking Consumers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 339-359, December.
    22. Wedad Elmaghraby & Altan Gülcü & P{i}nar Keskinocak, 2008. "Designing Optimal Preannounced Markdowns in the Presence of Rational Customers with Multiunit Demands," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 126-148, June.
    23. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    24. Hila Etzion & Edieal Pinker & Abraham Seidmann, 2006. "Analyzing the Simultaneous Use of Auctions and Posted Prices for Online Selling," Manufacturing & Service Operations Management, INFORMS, vol. 8(1), pages 68-91, March.
    25. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    26. Gérard P. Cachon & Robert Swinney, 2011. "The Value of Fast Fashion: Quick Response, Enhanced Design, and Strategic Consumer Behavior," Management Science, INFORMS, vol. 57(4), pages 778-795, April.
    27. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    28. Gérard P. Cachon & Pnina Feldman, 2015. "Price Commitments with Strategic Consumers: Why It Can Be Optimal to Discount More Frequently … Than Optimal," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 399-410, July.
    29. Gad Allon & Awi Federgruen & Margaret Pierson, 2011. "How Much Is a Reduction of Your Customers' Wait Worth? An Empirical Study of the Fast-Food Drive-Thru Industry Based on Structural Estimation Methods," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 489-507, October.
    30. Sang Won Kim & Marcelo Olivares & Gabriel Y. Weintraub, 2014. "Measuring the Performance of Large-Scale Combinatorial Auctions: A Structural Estimation Approach," Management Science, INFORMS, vol. 60(5), pages 1180-1201, May.
    31. Gul, Faruk & Sonnenschein, Hugo & Wilson, Robert, 1986. "Foundations of dynamic monopoly and the coase conjecture," Journal of Economic Theory, Elsevier, vol. 39(1), pages 155-190, June.
    32. Robert L. Bray & Haim Mendelson, 2015. "Production Smoothing and the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 208-220, May.
    33. Lazear, Edward P, 1986. "Retail Pricing and Clearance Sales," American Economic Review, American Economic Association, vol. 76(1), pages 14-32, March.
    34. Jun Li & Nelson Granados & Serguei Netessine, 2014. "Are Consumers Strategic? Structural Estimation from the Air-Travel Industry," Management Science, INFORMS, vol. 60(9), pages 2114-2137, September.
    35. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    36. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    37. Stigler, George J., 2011. "Economics of Information," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 5, pages 35-49.
    38. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    39. Xuanming Su, 2007. "Intertemporal Pricing with Strategic Customer Behavior," Management Science, INFORMS, vol. 53(5), pages 726-741, May.
    40. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    41. Dasu, Sriram & Tong, Chunyang, 2010. "Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes," European Journal of Operational Research, Elsevier, vol. 204(3), pages 662-671, August.
    42. Glenn Ellison & Sara Fisher Ellison, 2009. "Search, Obfuscation, and Price Elasticities on the Internet," Econometrica, Econometric Society, vol. 77(2), pages 427-452, March.
    43. Kinshuk Jerath & Serguei Netessine & Senthil K. Veeraraghavan, 2010. "Revenue Management with Strategic Customers: Last-Minute Selling and Opaque Selling," Management Science, INFORMS, vol. 56(3), pages 430-448, March.
    44. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Semiparametric spatial regression: theory and practice," MPRA Paper 11991, University Library of Munich, Germany, revised Oct 2006.
    45. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    46. Moraga-González, José Luis & Wildenbeest, Matthijs R., 2008. "Maximum likelihood estimation of search costs," European Economic Review, Elsevier, vol. 52(5), pages 820-848, July.
    47. Bulow, Jeremy I, 1982. "Durable-Goods Monopolists," Journal of Political Economy, University of Chicago Press, vol. 90(2), pages 314-332, April.
    48. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    49. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    50. Xuanming Su & Fuqiang Zhang, 2009. "On the Value of Commitment and Availability Guarantees When Selling to Strategic Consumers," Management Science, INFORMS, vol. 55(5), pages 713-726, May.
    51. Coase, Ronald H, 1972. "Durability and Monopoly," Journal of Law and Economics, University of Chicago Press, vol. 15(1), pages 143-149, April.
    52. Felipe Caro & Jérémie Gallien, 2010. "Inventory Management of a Fast-Fashion Retail Network," Operations Research, INFORMS, vol. 58(2), pages 257-273, April.
    53. José Correa & Ricardo Montoya & Charles Thraves, 2016. "Contingent Preannounced Pricing Policies with Strategic Consumers," Operations Research, INFORMS, vol. 64(1), pages 251-272, February.
    54. Gourieroux, Christian & Monfort, Alain, 1997. "Simulation-based Econometric Methods," OUP Catalogue, Oxford University Press, number 9780198774754.
    55. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    56. Nancy L. Stokey, 1979. "Intertemporal Price Discrimination," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 93(3), pages 355-371.
    57. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    58. Gonca P. Soysal & Lakshman Krishnamurthi, 2012. "Demand Dynamics in the Seasonal Goods Industry: An Empirical Analysis," Marketing Science, INFORMS, vol. 31(2), pages 293-316, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022. "Demand Estimation Using Managerial Responses to Automated Price Recommendations," Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
    2. Yiwei Chen & Vivek F. Farias, 2018. "Robust Dynamic Pricing with Strategic Customers," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1119-1142, November.
    3. Woonghee Tim Huh & Michael Jong Kim & Meichun Lin, 2022. "Bayesian dithering for learning: Asymptotically optimal policies in dynamic pricing," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3576-3593, September.
    4. Gérard P. Cachon, 2020. "A Research Framework for Business Models: What Is Common Among Fast Fashion, E-Tailing, and Ride Sharing?," Management Science, INFORMS, vol. 66(3), pages 1172-1192, March.
    5. Yixin (Iris) Wang & Jun Li & Ravi Anupindi, 2023. "Manufacturing and Regulatory Barriers to Generic Drug Competition: A Structural Model Approach," Management Science, INFORMS, vol. 69(3), pages 1449-1467, March.
    6. Ilan Lobel, 2020. "Technical Note—Dynamic Pricing with Heterogeneous Patience Levels," Operations Research, INFORMS, vol. 68(4), pages 1038-1046, July.
    7. Kostas Bimpikis & Wedad J. Elmaghraby & Ken Moon & Wenchang Zhang, 2020. "Managing Market Thickness in Online Business-to-Business Markets," Management Science, INFORMS, vol. 66(12), pages 5783-5822, December.
    8. Gad Allon & Georgios Askalidis & Randall Berry & Nicole Immorlica & Ken Moon & Amandeep Singh, 2022. "When to Be Agile: Ratings and Version Updates in Mobile Apps," Management Science, INFORMS, vol. 68(6), pages 4261-4278, June.
    9. Vincent C. Li & Yat-wah Wan & Chi-Leung Chu & Yi-Cheng Lin, 2020. "A Dynamic Programming-Based Heuristic for Markdown Pricing and Inventory Allocation of a Seasonal Product in a Retail Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-30, January.
    10. Ken Moon & Patrick Bergemann & Daniel Brown & Andrew Chen & James Chu & Ellen A. Eisen & Gregory M. Fischer & Prashant Loyalka & Sungmin Rho & Joshua Cohen, 2023. "Manufacturing Productivity with Worker Turnover," Management Science, INFORMS, vol. 69(4), pages 1995-2015, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Borgs & Ozan Candogan & Jennifer Chayes & Ilan Lobel & Hamid Nazerzadeh, 2014. "Optimal Multiperiod Pricing with Service Guarantees," Management Science, INFORMS, vol. 60(7), pages 1792-1811, July.
    2. Negin Golrezaei & Hamid Nazerzadeh & Ramandeep Randhawa, 2020. "Dynamic Pricing for Heterogeneous Time-Sensitive Customers," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 562-581, May.
    3. Liu, Jingchen & Zhai, Xin & Chen, Lihua, 2019. "Optimal pricing strategy under trade-in program in the presence of strategic consumers," Omega, Elsevier, vol. 84(C), pages 1-17.
    4. Mustafa O. Kabul & Ali K. Parlaktürk, 2019. "The Value of Commitments When Selling to Strategic Consumers: A Supply Chain Perspective," Management Science, INFORMS, vol. 65(10), pages 4754-4770, October.
    5. Arian Aflaki & Pnina Feldman & Robert Swinney, 2019. "Becoming Strategic: Endogenous Consumer Time Preferences and Multiperiod Pricing," Operations Research, INFORMS, vol. 68(4), pages 1116-1131, July.
    6. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.
    7. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    8. Wu, Meng & Ran, Yun & Zhu, Stuart X., 2022. "Optimal pricing strategy: How to sell to strategic consumers?," International Journal of Production Economics, Elsevier, vol. 244(C).
    9. Dror Hermel & Benny Mantin & Yossi Aviv, 2022. "Can coupons counteract strategic consumer behavior?," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(3), pages 262-273, June.
    10. Benny Mantin & Eran Rubin, 2016. "Fare Prediction Websites and Transaction Prices: Empirical Evidence from the Airline Industry," Marketing Science, INFORMS, vol. 35(4), pages 640-655, July.
    11. Vincent Mak & Amnon Rapoport & Eyran J. Gisches & Jiaojie Han, 2014. "Purchasing Scarce Products Under Dynamic Pricing: An Experimental Investigation," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 425-438, July.
    12. Yanan Song & Xiaobo Zhao, 2017. "A newsvendor problem with boundedly rational strategic customers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 228-243, January.
    13. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    14. Mantin, Benny & Gillen, David, 2011. "The hidden information content of price movements," European Journal of Operational Research, Elsevier, vol. 211(2), pages 385-393, June.
    15. Özalp Özer & Yanchong Zheng, 2016. "Markdown or Everyday Low Price? The Role of Behavioral Motives," Management Science, INFORMS, vol. 62(2), pages 326-346, February.
    16. Yiwei Chen & Vivek F. Farias, 2018. "Robust Dynamic Pricing with Strategic Customers," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1119-1142, November.
    17. Alderighi, Marco & Gaggero, Alberto A. & Piga, Claudio A., 2022. "Hidden prices with fixed inventory: Evidence from the airline industry," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 42-61.
    18. Ghobadi, Somayeh Najafi- & Bagherinejad, Jafar & Taleizadeh, Ata Allah, 2021. "A two-generation new product model by considering forward-looking customers: Dynamic pricing and advertising optimization," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    19. Hattori, Keisuke & Zennyo, Yusuke, 2018. "Pricing and Diffusion of Durables with Network Externalities," MPRA Paper 86203, University Library of Munich, Germany.
    20. Hattori, Keisuke & Zennyo, Yusuke, 2018. "Heterogeneous Consumer Expectations and Monopoly Pricing for Durables with Network Externalities," MPRA Paper 89893, University Library of Munich, Germany, revised 08 Nov 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:64:y:2018:i:3:p:1271-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.