IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11991.html
   My bibliography  Save this paper

Semiparametric spatial regression: theory and practice

Author

Listed:
  • Gao, Jiti
  • Lu, Zudi
  • Tjostheim, Dag

Abstract

Nonparametric methods have been very popular in the last couple of decades in time series and regression, but no such development has taken place for spatial models. A rather obvious reason for this is the curse of dimensionality. For spatial data on a grid evaluating the conditional mean given its closest neighbors requires a four dimensional nonparametric regression. In this paper, a semi-parametric spatial regression approach is proposed to avoid this problem. An estimation procedure based on combining the so-called marginal integration technique with local linear kernel estimation is developed in the semi-parametric spatial regression setting. Asymptotic distributions are established under some mild conditions. The same convergence rates as in the one-dimensional regression case are established. An application of the methodology to the classical Mercer wheat data set is given and indicates that one directional component appears to be nonlinear, which has gone unnoticed in earlier analyses.

Suggested Citation

  • Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Semiparametric spatial regression: theory and practice," MPRA Paper 11991, University Library of Munich, Germany, revised Oct 2006.
  • Handle: RePEc:pra:mprapa:11991
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11991/1/MPRA_paper_11991.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiti Gao & Maxwell King, 2004. "Model Specification Testing in Nonparametric and Semiparametric Time Series Econometric Models," Econometric Society 2004 North American Winter Meetings 225, Econometric Society.
    2. Fan, J. & Härdle, Wolfgang & Mammen, Enno, 1996. "Direct estimation of low dimensional components in additive models," SFB 373 Discussion Papers 1996,17, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    4. Marc Hallin & Michel Carbon & Lanh T. Tran, 1996. "Kernel density estimation on random fields: the L1 theory," ULB Institutional Repository 2013/2065, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Alaei & Ali Makhdoumi & Azarakhsh Malekian & Saša Pekeč, 2022. "Revenue-Sharing Allocation Strategies for Two-Sided Media Platforms: Pro-Rata vs. User-Centric," Management Science, INFORMS, vol. 68(12), pages 8699-8721, December.
    2. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    3. Mehmet Altin, 2017. "A taxonomy of hotel revenue management implementation strategies," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(3), pages 246-264, June.
    4. Rajib L. Saha & Sumanta Singha & Subodha Kumar, 2021. "Does Congestion Always Hurt? Managing Discount Under Congestion in a Game-Theoretic Setting," Information Systems Research, INFORMS, vol. 32(4), pages 1347-1367, December.
    5. Yiwei Chen & Vivek F. Farias, 2018. "Robust Dynamic Pricing with Strategic Customers," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1119-1142, November.
    6. Ruomeng Cui & Hyoduk Shin, 2018. "Sharing Aggregate Inventory Information with Customers: Strategic Cross-Selling and Shortage Reduction," Management Science, INFORMS, vol. 64(1), pages 381-400, January.
    7. Maxime C. Cohen & Ruben Lobel & Georgia Perakis, 2016. "The Impact of Demand Uncertainty on Consumer Subsidies for Green Technology Adoption," Management Science, INFORMS, vol. 62(5), pages 1235-1258, May.
    8. Mohammad Vardi & Ali Salmasnia & Ali Ghorbanian & Hadi Mokhtari, 2016. "A bi-objective airline revenue management problem with possible cancellation," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 8(1), pages 20-37.
    9. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    10. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    11. Ken Moon & Kostas Bimpikis & Haim Mendelson, 2018. "Randomized Markdowns and Online Monitoring," Management Science, INFORMS, vol. 64(3), pages 1271-1290, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    2. Badi H. Baltagi & Dong Li, 2002. "Series Estimation of Partially Linear Panel Data Models with Fixed Effects," Annals of Economics and Finance, Society for AEF, vol. 3(1), pages 103-116, May.
    3. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    4. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    5. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    6. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    8. Levine, Michael & Li, Jinguang (Tony), 2012. "A simple additivity test for conditionally heteroscedastic nonlinear autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2421-2429.
    9. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    10. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
    11. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    12. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    13. Juan Carlos Escanciano, 2006. "Joint Diagnostic Tests for Conditional Mean and Variance Specifications," Faculty Working Papers 02/06, School of Economics and Business Administration, University of Navarra.
    14. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    15. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    16. Kottaridi, Constantina & Stengos, Thanasis, 2010. "Foreign direct investment, human capital and non-linearities in economic growth," Journal of Macroeconomics, Elsevier, vol. 32(3), pages 858-871, September.
    17. Francesco Vidoli & Giancarlo Ferrara, 2015. "Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models," Empirical Economics, Springer, vol. 49(2), pages 641-658, September.
    18. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    19. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
    20. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.

    More about this item

    Keywords

    Additive approximation; asymptotic theory; conditional autoregression; local linear kernel estimate; marginal integration; semiparametric regression; spatial mixing process;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.