IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v92y2022i4d10.1007_s11573-021-01057-6.html
   My bibliography  Save this article

Worth the effort? Comparison of different MCMC algorithms for estimating the Pareto/NBD model

Author

Listed:
  • Lydia Simon

    (University of Duisburg-Essen)

  • Jost Adler

    (University of Duisburg-Essen)

Abstract

The Pareto/NBD model is one of the best-known models in customer base analysis. Extant literature has brought up three different Markov Chain Monte Carlo (MCMC) procedures for parameter estimation of this model. Nevertheless, three main research gaps remain. Firstly, the issue of hyper parameter sensitivity for these procedures has been disregarded even though this is crucial when dealing with small sample sizes. Secondly, present research lacks a performance comparison between the different MCMC procedures as well as with Maximum Likelihood Estimates (MLE). Thirdly, existing minimal data set requirements for this model neglect MCMC estimation procedures as they only refer to MLE. To tackle these gaps, we perform two extensive simulation studies. We demonstrate that the algorithms differ in their sensitivity towards the hyper distributions and identify one algorithm that outperforms the other procedures in all respects. In addition, we provide deeper insights into individual level forecasts when using MCMC and enhance extant data set limitation guidelines by considering not only the cohort size but also the length of the calibration period.

Suggested Citation

  • Lydia Simon & Jost Adler, 2022. "Worth the effort? Comparison of different MCMC algorithms for estimating the Pareto/NBD model," Journal of Business Economics, Springer, vol. 92(4), pages 707-733, May.
  • Handle: RePEc:spr:jbecon:v:92:y:2022:i:4:d:10.1007_s11573-021-01057-6
    DOI: 10.1007/s11573-021-01057-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-021-01057-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-021-01057-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    2. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    3. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    4. Richard Paap, 2002. "What are the advantages of MCMC based inference in latent variable models?," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(1), pages 2-22, February.
    5. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    6. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    7. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    8. repec:dau:papers:123456789/1908 is not listed on IDEAS
    9. Albert C. Bemmaor & Nicolas Glady, 2012. "Modeling Purchasing Behavior with Sudden "Death": A Flexible Customer Lifetime Model," Management Science, INFORMS, vol. 58(5), pages 1012-1021, May.
    10. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    11. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    12. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    2. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    3. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    4. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    5. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    6. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    7. Makoto Abe, 2015. "Deriving Customer Lifetime Value from RFM Measures:Insights into Customer Retention and Acquisition," CIRJE F-Series CIRJE-F-962, CIRJE, Faculty of Economics, University of Tokyo.
    8. Tudoran, Ana Alina & Hjerrild Thomsen, Charlotte & Thomasen, Sophie, 2024. "Understanding consumer behavior during and after a Pandemic: Implications for customer lifetime value prediction models," Journal of Business Research, Elsevier, vol. 174(C).
    9. Sharad Borle & Siddharth Shekhar Singh & Dipak C. Jain & Ashutosh Patil, 2016. "Analyzing Recurrent Customer Purchases and Unobserved Defections: a Bayesian Data Augmentation Scheme," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 3(1), pages 11-28, March.
    10. Sharad Borle & Siddharth Singh & Dipak Jain & Ashutosh Patil, 2016. "Analyzing Recurrent Customer Purchases and Unobserved Defections: a Bayesian Data Augmentation Scheme," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 3(1), pages 11-28, March.
    11. Kinshuk Jerath & Peter S. Fader & Bruce G. S. Hardie, 2011. "New Perspectives on Customer "Death" Using a Generalization of the Pareto/NBD Model," Marketing Science, INFORMS, vol. 30(5), pages 866-880, September.
    12. Tat Y. Chan & Chunhua Wu & Ying Xie, 2011. "Measuring the Lifetime Value of Customers Acquired from Google Search Advertising," Marketing Science, INFORMS, vol. 30(5), pages 837-850, September.
    13. Leslie Hannah & Makoto Kasuya, 2015. "Twentieth Century Enterprise Forms: Japan in Comparative Perspective," CIRJE F-Series CIRJE-F-966, CIRJE, Faculty of Economics, University of Tokyo.
    14. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    15. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    16. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    17. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    18. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    19. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    20. Hoppe, Daniel & Wagner, Udo, 2014. "The role of lifetime activity cues in customer base analysis," Journal of Business Research, Elsevier, vol. 67(5), pages 983-989.

    More about this item

    Keywords

    Customer base analysis; Pareto/NBD model; Markov Chain Monte Carlo;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:92:y:2022:i:4:d:10.1007_s11573-021-01057-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.