IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v43y2024i3p615-636.html
   My bibliography  Save this article

Online Search and Optimal Product Rankings: An Empirical Framework

Author

Listed:
  • Giovanni Compiani

    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Gregory Lewis

    (Amazon, Boston, Massachusetts 02138)

  • Sida Peng

    (Microsoft, Boston, Massachusetts 02138)

  • Peichun Wang

    (Unity, San Francisco, California 94016)

Abstract

We study the problem faced by an online retail platform choosing product rankings in order to maximize two distinct goals: consumer surplus and revenues/profits. To this end, we specify a version of the Weitzman sequential search model in which search reveals a consumer’s idiosyncratic taste for the product as well as vertical dimensions of its quality, and we derive convenient expressions for consumer surplus and revenues. To optimize consumer surplus, platforms should facilitate product discovery by promoting “diamonds in the rough,” that is, products with a large gap between the utility they deliver and what consumers expect based on the presearch information. By contrast, to maximize static revenues, the platform should favor high-margin products, potentially creating a tension between the two objectives. We develop computationally tractable algorithms for estimating consumer preferences and optimizing rankings, and we provide approximate optimality guarantees in the latter case. When we apply our approach to data from Expedia, our suggested consumer surplus–optimizing ranking achieves both higher consumer surplus and higher revenues relative to the Expedia ranking—delivering a Pareto improvement—and also dominates ranking the products in order of utility, which is intuitive but fails to leverage information on what consumers know presearch.

Suggested Citation

  • Giovanni Compiani & Gregory Lewis & Sida Peng & Peichun Wang, 2024. "Online Search and Optimal Product Rankings: An Empirical Framework," Marketing Science, INFORMS, vol. 43(3), pages 615-636, May.
  • Handle: RePEc:inm:ormksc:v:43:y:2024:i:3:p:615-636
    DOI: 10.1287/mksc.2022.0071
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.0071
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Glenn Ellison, 2011. "Position Auctions with Consumer Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1213-1270.
    2. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    3. Michael Choi & Anovia Yifan Dai & Kyungmin Kim, 2018. "Consumer Search and Price Competition," Econometrica, Econometric Society, vol. 86(4), pages 1257-1281, July.
    4. Robert Kleinberg & Bo Waggoner & E. Glen Weyl, 2016. "Descending Price Optimally Coordinates Search," Papers 1603.07682, arXiv.org, revised Dec 2016.
    5. Train, Kenneth, 2015. "Welfare calculations in discrete choice models when anticipated and experienced attributes differ: A guide with examples," Journal of choice modelling, Elsevier, vol. 16(C), pages 15-22.
    6. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    7. Armstrong, Mark & Vickers, John, 2015. "Which demand systems can be generated by discrete choice?," Journal of Economic Theory, Elsevier, vol. 158(PA), pages 293-307.
    8. Nitin Mehta & Surendra Rajiv & Kannan Srinivasan, 2003. "Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation," Marketing Science, INFORMS, vol. 22(1), pages 58-84, June.
    9. Mark Armstrong, 2017. "Ordered Consumer Search," Journal of the European Economic Association, European Economic Association, vol. 15(5), pages 989-1024.
    10. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
    11. Raluca M. Ursu & Daria Dzyabura, 2020. "Retailers’ product location problem with consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 18(2), pages 125-154, June.
    12. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2010. "Online Demand Under Limited Consumer Search," Marketing Science, INFORMS, vol. 29(6), pages 1001-1023, 11-12.
    13. Chris Gu & Yike Wang, 2022. "Consumer Online Search with Partially Revealed Information," Management Science, INFORMS, vol. 68(6), pages 4215-4235, June.
    14. Daniel Zantedeschi & Eleanor McDonnell Feit & Eric T. Bradlow, 2017. "Measuring Multichannel Advertising Response," Management Science, INFORMS, vol. 63(8), pages 2706-2728, August.
    15. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    16. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    17. Zhenling Jiang & Tat Chan & Hai Che & Youwei Wang, 2021. "Consumer Search and Purchase: An Empirical Investigation of Retargeting Based on Consumer Online Behaviors," Marketing Science, INFORMS, vol. 40(2), pages 219-240, March.
    18. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
    19. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    20. Hunt Allcott, 2013. "The Welfare Effects of Misperceived Product Costs: Data and Calibrations from the Automobile Market," American Economic Journal: Economic Policy, American Economic Association, vol. 5(3), pages 30-66, August.
    21. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    22. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.
    23. Elisabeth Honka & Ali Hortaçsu & Maria Ana Vitorino, 2017. "Advertising, consumer awareness, and choice: evidence from the U.S. banking industry," RAND Journal of Economics, RAND Corporation, vol. 48(3), pages 611-646, August.
    24. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    25. Song Yao & Carl F. Mela, 2011. "A Dynamic Model of Sponsored Search Advertising," Marketing Science, INFORMS, vol. 30(3), pages 447-468, 05-06.
    26. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.
    2. Honka, Elisabeth & Seiler, Stephan & Ursu, Raluca, 2024. "Consumer search: What can we learn from pre-purchase data?," Journal of Retailing, Elsevier, vol. 100(1), pages 114-129.
    3. Rafael P. Greminger, 2022. "Heterogeneous Position Effects and the Power of Rankings," Papers 2210.16408, arXiv.org, revised Dec 2023.
    4. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    5. Raluca Ursu & Stephan Seiler & Elisabeth Honka, 2023. "The Sequential Search Model: A Framework for Empirical Research," CESifo Working Paper Series 10264, CESifo.
    6. Raluca M. Ursu & Qianyun Zhang & Elisabeth Honka, 2023. "Search Gaps and Consumer Fatigue," Marketing Science, INFORMS, vol. 42(1), pages 110-136, January.
    7. Greminger, Rafael, 2019. "Optimal Search and Awareness Expansion," Other publications TiSEM ac47e6ff-42a4-4d70-addd-6, Tilburg University, School of Economics and Management.
    8. Rafael P. Greminger, 2019. "Optimal Search and Discovery," Papers 1911.07773, arXiv.org, revised Feb 2022.
    9. Greminger, Rafael, 2019. "Optimal Search and Awareness Expansion," Discussion Paper 2019-034, Tilburg University, Center for Economic Research.
    10. Wei Zhou & Zidong Wang, 2020. "Competing for Search Traffic in Query Markets: Entry Strategy, Platform Design, and Entrepreneurship," Working Papers 20-12, NET Institute.
    11. Leon Yang Chu & Hamid Nazerzadeh & Heng Zhang, 2020. "Position Ranking and Auctions for Online Marketplaces," Management Science, INFORMS, vol. 66(8), pages 3617-3634, August.
    12. Robert Donnelly & Ayush Kanodia & Ilya Morozov, 2024. "Welfare Effects of Personalized Rankings," Marketing Science, INFORMS, vol. 43(1), pages 92-113, January.
    13. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.
    14. Jason Abaluck & Giovanni Compiani, 2020. "A Method to Estimate Discrete Choice Models that is Robust to Consumer Search," NBER Working Papers 26849, National Bureau of Economic Research, Inc.
    15. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
    16. Gibbard, Peter, 2023. "Search with two stages of information acquisition: A structural econometric model of online purchases," Information Economics and Policy, Elsevier, vol. 65(C).
    17. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    18. Hedyeh Beyhaghi & Linda Cai, 2023. "Recent Developments in Pandora's Box Problem: Variants and Applications," Papers 2308.12242, arXiv.org.
    19. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    20. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:43:y:2024:i:3:p:615-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.