IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26849.html
   My bibliography  Save this paper

A Method to Estimate Discrete Choice Models that is Robust to Consumer Search

Author

Listed:
  • Jason Abaluck
  • Giovanni Compiani

Abstract

We state a sufficient condition under which choice data alone suffices to identify consumer preferences when choices are not fully informed. Suppose that: (i) the data generating process is a search model in which the attribute hidden to consumers is observed by the econometrician; (ii) if a consumer searches good j, she also searches goods which are better than j in terms of the non-hidden component of utility; and (iii) consumers choose the good that maximizes overall utility among searched goods. Canonical models will be biased: the value of the hidden attribute will be understated because consumers will be unresponsive to variation in the attribute for goods that they do not search. Under the conditions above and additional mild restrictions, an alternative method of recovering preferences using cross derivatives of choice probabilities succeeds regardless of the search protocol and is thus robust to whether consumers are informed. The approach nests several standard models, including full information. Our methods suggest natural tests for full information and can be used to forecast how consumers will respond to additional information. We verify in a lab experiment that our approach succeeds in recovering preferences when consumers engage in costly search.

Suggested Citation

  • Jason Abaluck & Giovanni Compiani, 2020. "A Method to Estimate Discrete Choice Models that is Robust to Consumer Search," NBER Working Papers 26849, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26849
    Note: AG DEV ED EH IO LS PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26849.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Choi & Anovia Yifan Dai & Kyungmin Kim, 2018. "Consumer Search and Price Competition," Econometrica, Econometric Society, vol. 86(4), pages 1257-1281, July.
    2. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    3. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    4. T. Tony Ke & Zuo-Jun Max Shen & J. Miguel Villas-Boas, 2016. "Search for Information on Multiple Products," Management Science, INFORMS, vol. 62(12), pages 3576-3603, December.
    5. Paola Manzini & Marco Mariotti, 2014. "Stochastic Choice and Consideration Sets," Econometrica, Econometric Society, vol. 82(3), pages 1153-1176, May.
    6. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    7. Hunt Allcott & Benjamin B Lockwood & Dmitry Taubinsky, 2019. "Regressive Sin Taxes, with an Application to the Optimal Soda Tax," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(3), pages 1557-1626.
    8. Mark Armstrong, 2017. "Ordered Consumer Search," Journal of the European Economic Association, European Economic Association, vol. 15(5), pages 989-1024.
    9. Xavier Gabaix & David Laibson & Guillermo Moloche & Stephen Weinberg, 2006. "Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model," American Economic Review, American Economic Association, vol. 96(4), pages 1043-1068, September.
    10. Keith Marzilli Ericson & Philipp Kircher & Johannes Spinnewijn & Amanda Starc, 2021. "Inferring Risk Perceptions and Preferences Using Choice from Insurance Menus: Theory and Evidence," The Economic Journal, Royal Economic Society, vol. 131(634), pages 713-744.
    11. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    12. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    13. Hunt Allcott & Christopher Knittel, 2019. "Are Consumers Poorly Informed about Fuel Economy? Evidence from Two Experiments," American Economic Journal: Economic Policy, American Economic Association, vol. 11(1), pages 1-37, February.
    14. Elisabeth Honka & Ali Hortaçsu & Maria Ana Vitorino, 2017. "Advertising, consumer awareness, and choice: evidence from the U.S. banking industry," RAND Journal of Economics, RAND Corporation, vol. 48(3), pages 611-646, August.
    15. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    16. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    17. Nitin Mehta & Surendra Rajiv & Kannan Srinivasan, 2003. "Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation," Marketing Science, INFORMS, vol. 22(1), pages 58-84, June.
    18. Manski, Charles F., 2002. "Identification of decision rules in experiments on simple games of proposal and response," European Economic Review, Elsevier, vol. 46(4-5), pages 880-891, May.
    19. Fernando Branco & Monic Sun & J. Miguel Villas-Boas, 2012. "Optimal Search for Product Information," Management Science, INFORMS, vol. 58(11), pages 2037-2056, November.
    20. Erin M. Johnson & M. Marit Rehavi, 2016. "Physicians Treating Physicians: Information and Incentives in Childbirth," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 115-141, February.
    21. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    22. Ali Hortaçsu & Chad Syverson, 2004. "Product Differentiation, Search Costs, and Competition in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(2), pages 403-456.
    23. Han Hong & Matthew Shum, 2006. "Using price distributions to estimate search costs," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 257-275, June.
    24. Jeremy T. Fox & Amit Gandhi, 2016. "Nonparametric identification and estimation of random coefficients in multinomial choice models," RAND Journal of Economics, RAND Corporation, vol. 47(1), pages 118-139, February.
    25. Bart J. Bronnenberg & Jean-Pierre Dubé & Matthew Gentzkow & Jesse M. Shapiro, 2015. "Do Pharmacists Buy Bayer? Informed Shoppers and the Brand Premium," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1669-1726.
    26. Jason Abaluck & Jonathan Gruber, 2011. "Choice Inconsistencies among the Elderly: Evidence from Plan Choice in the Medicare Part D Program," American Economic Review, American Economic Association, vol. 101(4), pages 1180-1210, June.
    27. Hunt Allcott & Dmitry Taubinsky, 2015. "Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market," American Economic Review, American Economic Association, vol. 105(8), pages 2501-2538, August.
    28. Jason Abaluck & Abi Adams, 2017. "What do consumers consider before they choose? Identification from asymmetric demand responses," IFS Working Papers W17/09, Institute for Fiscal Studies.
    29. Jason Abaluck & Abi Adams, 2017. "What Do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses," NBER Working Papers 23566, National Bureau of Economic Research, Inc.
    30. Christopher T. Conlon & Julie Holland Mortimer, 2013. "Demand Estimation under Incomplete Product Availability," American Economic Journal: Microeconomics, American Economic Association, vol. 5(4), pages 1-30, November.
    31. Martin Gaynor & Carol Propper & Stephan Seiler, 2016. "Free to Choose? Reform, Choice, and Consideration Sets in the English National Health Service," American Economic Review, American Economic Association, vol. 106(11), pages 3521-3557, November.
    32. Susan E. Woodward & Robert E. Hall, 2012. "Diagnosing Consumer Confusion and Sub-optimal Shopping Effort: Theory and Mortgage-Market Evidence," American Economic Review, American Economic Association, vol. 102(7), pages 3249-3276, December.
    33. Stahl, Dale O, II, 1989. "Oligopolistic Pricing with Sequential Consumer Search," American Economic Review, American Economic Association, vol. 79(4), pages 700-712, September.
    34. Benjamin R. Handel & Jonathan T. Kolstad, 2015. "Health Insurance for "Humans": Information Frictions, Plan Choice, and Consumer Welfare," American Economic Review, American Economic Association, vol. 105(8), pages 2449-2500, August.
    35. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    36. Justine S. Hastings & Jeffrey M. Weinstein, 2008. "Information, School Choice, and Academic Achievement: Evidence from Two Experiments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(4), pages 1373-1414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhole, Monica & Fradkin, Andrey & Horton, John, 2021. "Information About Vacancy Competition Redirects Job Search," SocArXiv p82fk, Center for Open Science.
    2. Jiarui Liu, 2021. "Sequential Search Models: A Pairwise Maximum Rank Approach," Papers 2104.13865, arXiv.org, revised Nov 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Compiani, 2022. "Market counterfactuals and the specification of multiproduct demand: A nonparametric approach," Quantitative Economics, Econometric Society, vol. 13(2), pages 545-591, May.
    2. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.
    3. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.
    4. Crawford, Gregory S. & Griffith, Rachel & Iaria, Alessandro, 2021. "A survey of preference estimation with unobserved choice set heterogeneity," Journal of Econometrics, Elsevier, vol. 222(1), pages 4-43.
    5. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    6. Honka, Elisabeth & Seiler, Stephan & Ursu, Raluca, 2024. "Consumer search: What can we learn from pre-purchase data?," Journal of Retailing, Elsevier, vol. 100(1), pages 114-129.
    7. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    8. Hyungsik Roger Moon & Matthew Shum & Martin Weidner, 2017. "Estimation of random coefficients logit demand models with interactive fixed effects," CeMMAP working papers 12/17, Institute for Fiscal Studies.
    9. Giovanni Compiani & Gregory Lewis & Sida Peng & Peichun Wang, 2024. "Online Search and Optimal Product Rankings: An Empirical Framework," Marketing Science, INFORMS, vol. 43(3), pages 615-636, May.
    10. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    11. Xavier Gabaix, 2017. "Behavioral Inattention," NBER Working Papers 24096, National Bureau of Economic Research, Inc.
    12. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    13. Rafael P. Greminger, 2019. "Optimal Search and Discovery," Papers 1911.07773, arXiv.org, revised Feb 2022.
    14. Jason Abaluck & Abi Adams, 2017. "What Do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses," NBER Working Papers 23566, National Bureau of Economic Research, Inc.
    15. Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
    16. Nano Barahona & Cristóbal Otero & Sebastián Otero, 2023. "Equilibrium Effects of Food Labeling Policies," Econometrica, Econometric Society, vol. 91(3), pages 839-868, May.
    17. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    18. Greminger, Rafael, 2019. "Optimal Search and Awareness Expansion," Other publications TiSEM ac47e6ff-42a4-4d70-addd-6, Tilburg University, School of Economics and Management.
    19. Victor H. Aguiar & Maria Jose Boccardi & Nail Kashaev & Jeongbin Kim, 2023. "Random utility and limited consideration," Quantitative Economics, Econometric Society, vol. 14(1), pages 71-116, January.
    20. T. Tony Ke & Song Lin, 2020. "Informational Complementarity," Management Science, INFORMS, vol. 66(8), pages 3699-3716, August.

    More about this item

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • D0 - Microeconomics - - General
    • D6 - Microeconomics - - Welfare Economics
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.