IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v36y2017i2p290-300.html
   My bibliography  Save this article

“Ten Million Readers Can’t Be Wrong!,” or Can They? On the Role of Information About Adoption Stock in New Product Trial

Author

Listed:
  • Coby Morvinski

    (Interdisciplinary Center (IDC) Herzliya, Herzliya 46150, Israel)

  • On Amir

    (University of California, San Diego, La Jolla, California 92093)

  • Eitan Muller

    (Interdisciplinary Center (IDC) Herzliya, Herzliya 46150, Israel; New York University, New York, New York 10012)

Abstract

Most new-product frameworks in marketing and economics, as well as lay beliefs and practices, hold that the larger the stock of adoption of a new product, the greater the likelihood of additional adoption. Less is known about the underlying mechanisms as well as the conditions under which this central assumption holds. We use a series of field and consequential choice experiments to demonstrate the existence of nonpositive and even negative effects of large adoption stock information on the likelihood of subsequent adoption. The results highlight the degree of homophily with the adopting stock as well as the level of customer uncertainty as key characteristics determining the nature of the effect of stock information. In particular, information about a large existing adoption stock generates a positive effect on adoption only under moderate customer uncertainty combined with sufficient homophily; in other levels of uncertainty and/or homophily we find effects ranging from null to negative. This is the first direct test and demonstration of the intricate role of information about a large stock of adoption in the new product diffusion process, and it carries direct implications for marketers.

Suggested Citation

  • Coby Morvinski & On Amir & Eitan Muller, 2017. "“Ten Million Readers Can’t Be Wrong!,” or Can They? On the Role of Information About Adoption Stock in New Product Trial," Marketing Science, INFORMS, vol. 36(2), pages 290-300, March.
  • Handle: RePEc:inm:ormksc:v:36:y:2017:i:2:p:290-300
    DOI: 10.1287/mksc.2016.1011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mksc.2016.1011
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2016.1011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dina Mayzlin & Jiwoong Shin, 2011. "Uninformative Advertising as an Invitation to Search," Marketing Science, INFORMS, vol. 30(4), pages 666-685, July.
    2. Clee, Mona A & Wicklund, Robert A, 1980. "Consumer Behavior and Psychological Reactance," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 6(4), pages 389-405, March.
    3. Pesendorfer, Wolfgang, 1995. "Design Innovation and Fashion Cycles," American Economic Review, American Economic Association, vol. 85(4), pages 771-792, September.
    4. Wesley Hartmann & Puneet Manchanda & Harikesh Nair & Matthew Bothner & Peter Dodds & David Godes & Kartik Hosanagar & Catherine Tucker, 2008. "Modeling social interactions: Identification, empirical methods and policy implications," Marketing Letters, Springer, vol. 19(3), pages 287-304, December.
    5. Mark Grinblatt & Matti Keloharju & Seppo Ikäheimo, 2008. "Social Influence and Consumption: Evidence from the Automobile Purchases of Neighbors," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 735-753, November.
    6. Esther Duflo & Emmanuel Saez, 2003. "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 815-842.
    7. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    8. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    9. David Bell & Sangyoung Song, 2007. "Neighborhood effects and trial on the internet: Evidence from online grocery retailing," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 361-400, December.
    10. Wilfred Amaldoss & Sanjay Jain, 2005. "Conspicuous Consumption and Sophisticated Thinking," Management Science, INFORMS, vol. 51(10), pages 1449-1466, October.
    11. Jonah Berger & Chip Heath, 2007. "Where Consumers Diverge from Others: Identity Signaling and Product Domains," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(2), pages 121-134, June.
    12. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    13. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    14. Yili (Kevin) Hong & Paul A. Pavlou, 2014. "Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents," Information Systems Research, INFORMS, vol. 25(2), pages 328-344, June.
    15. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    16. Grewal, Dhruv & Gotlieb, Jerry & Marmorstein, Howard, 1994. "The Moderating Effects of Message Framing and," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(1), pages 145-153, June.
    17. Katherine White & Darren W. Dahl, 2007. "Are All Out-Groups Created Equal? Consumer Identity and Dissociative Influence," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 525-536, June.
    18. Puneet Manchanda & Ying Xie & Nara Youn, 2008. "The Role of Targeted Communication and Contagion in Product Adoption," Marketing Science, INFORMS, vol. 27(6), pages 961-976, 11-12.
    19. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
    20. Shimp, Terence A & Bearden, William O, 1982. "Warranty and Other Extrinsic Cue Effects on Consumers' Risk Perceptions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(1), pages 38-46, June.
    21. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    22. Catherine Tucker & Juanjuan Zhang, 2011. "How Does Popularity Information Affect Choices? A Field Experiment," Management Science, INFORMS, vol. 57(5), pages 828-842, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Appel, Gil & Libai, Barak & Muller, Eitan & Shachar, Ron, 2020. "On the monetization of mobile apps," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 93-107.
    2. Michael Moscarelli & Gary Wingenbach & Robert Strong, 2023. "Educator–Learner Homophily Effect on Participants’ Adoption of Agribusiness Recordkeeping Practices," Agriculture, MDPI, vol. 13(12), pages 1-14, November.
    3. Appel, Gil & Libai, Barak & Muller, Eitan, 2018. "On the monetary impact of fashion design piracy," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 591-610.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant Miller & A. Mushfiq Mobarak, 2015. "Learning About New Technologies Through Social Networks: Experimental Evidence on Nontraditional Stoves in Bangladesh," Marketing Science, INFORMS, vol. 34(4), pages 480-499, July.
    2. Bryan Bollinger & Kenneth Gillingham & A. Justin Kirkpatrick & Steven Sexton, 2022. "Visibility and Peer Influence in Durable Good Adoption," Marketing Science, INFORMS, vol. 41(3), pages 453-476, May.
    3. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    4. Viswanathan, Vijay & Sese, F. Javier & Krafft, Manfred, 2017. "Social influence in the adoption of a B2B loyalty program: The role of elite status members," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 901-918.
    5. Vishal Narayan & Vithala R. Rao & Carolyne Saunders, 2011. "How Peer Influence Affects Attribute Preferences: A Bayesian Updating Mechanism," Marketing Science, INFORMS, vol. 30(2), pages 368-384, 03-04.
    6. Jurui Zhang & Yong Liu & Yubo Chen, 2015. "Social Learning in Networks of Friends versus Strangers," Marketing Science, INFORMS, vol. 34(4), pages 573-589, July.
    7. Christian Catalini & Catherine Tucker, 2016. "Seeding the S-Curve? The Role of Early Adopters in Diffusion," NBER Working Papers 22596, National Bureau of Economic Research, Inc.
    8. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    9. Florian Probst & Laura Grosswiele & Regina Pfleger, 2013. "Who will lead and who will follow: Identifying Influential Users in Online Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(3), pages 179-193, June.
    10. Bhatia, Tulikaa & Wang, Lei, 2011. "Identifying physician peer-to-peer effects using patient movement data," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 51-61.
    11. Langley, David J. & Hoeve, Maarten C. & Ortt, J. Roland & Pals, Nico & van der Vecht, Bob, 2014. "Patterns of Herding and their Occurrence in an Online Setting," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 16-25.
    12. Xingyu Chen & Xing Li & Dai Yao & Zhimin Zhou, 2019. "Seeking the support of the silent majority: are lurking users valuable to UGC platforms?," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 986-1004, November.
    13. David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
    14. Sridhar Narayanan & Harikesh S. Nair, 2011. "Estimating Causal Installed-Base Effects: A Bias-Correction Approach," Working Papers 11-22, NET Institute.
    15. Yuichiro Kamada & Aniko Öry, 2020. "Contracting with Word-of-Mouth Management," Management Science, INFORMS, vol. 66(11), pages 5094-5107, November.
    16. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    17. Zheyin (Jane) Gu & Xinxin Li, 2023. "Social Sharing, Public Perception, and Brand Competition in a Horizontally Differentiated Market," Information Systems Research, INFORMS, vol. 34(2), pages 553-569, June.
    18. David Godes, 2012. "The Strategic Impact of References in Business Markets," Marketing Science, INFORMS, vol. 31(2), pages 257-276, March.
    19. Khim-Yong Goh & Kai-Lung Hui & Ivan P. L. Png, 2015. "Privacy and Marketing Externalities: Evidence from Do Not Call," Management Science, INFORMS, vol. 61(12), pages 2982-3000, December.
    20. Sharad Goel & Daniel G. Goldstein, 2014. "Predicting Individual Behavior with Social Networks," Marketing Science, INFORMS, vol. 33(1), pages 82-93, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:36:y:2017:i:2:p:290-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.