IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v224y2013i2p425-434.html
   My bibliography  Save this article

Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management

Author

Listed:
  • Singh, Shweta
  • Murthi, B.P.S.
  • Steffes, Erin

Abstract

Current models of customer lifetime value (CLV) consider the discounted value of profits that a customer generates over an expected lifetime of relationship with the firm. This practice can be misleading in the financial services markets because it ignores the risk posed by the customer (such as delinquency and default). Specifically, in the credit card market, the correlation between revenue and risk is positive. Therefore, firms need to adjust a customer’s profits for the associated risk before developing a measure of customer lifetime value. We propose a new measure, risk adjusted revenue (RAR), that can incorporate multiple sources of risk and demonstrate the usefulness of the proposed measure in correctly assessing the value of a customer in the credit card market. The model can be extended to compute risk adjusted lifetime value (RALTV). We use the RAR metric to understand the effectiveness of different modes of acquisition, and of retention strategies such as affinity cards and reward cards. We find that both reward- and affinity-cardholders generate higher RAR than non-reward and non-affinity cardholders respectively. The ordering of different modes of acquisition with respect to RAR (in decreasing order) is as follows: Internet, direct mail, telesales, and direct selling.

Suggested Citation

  • Singh, Shweta & Murthi, B.P.S. & Steffes, Erin, 2013. "Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management," European Journal of Operational Research, Elsevier, vol. 224(2), pages 425-434.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:2:p:425-434
    DOI: 10.1016/j.ejor.2012.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712006078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    3. Joanna Stavins, 2000. "Credit card borrowing, delinquency, and personal bankruptcy," New England Economic Review, Federal Reserve Bank of Boston, issue Jul, pages 15-30.
    4. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    5. David B. Gross, 2002. "An Empirical Analysis of Personal Bankruptcy and Delinquency," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 319-347, March.
    6. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    7. Garcia, Gillian, 1980. "Credit Cards: An Interdisciplinary Survey," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 6(4), pages 327-337, March.
    8. Meeusen, Wim & van den Broeck, J, 1977. "Technical Efficiency and Dimension of the Firm: Some Results on the Use of Frontier Production Functions," Empirical Economics, Springer, vol. 2(2), pages 109-122.
    9. Rajiv D. Banker & Robert F. Conrad & Robert P. Strauss, 1986. "A Comparative Application of Data Envelopment Analysis and Translog Methods: An Illustrative Study of Hospital Production," Management Science, INFORMS, vol. 32(1), pages 30-44, January.
    10. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    11. Cielen, Anja & Peeters, Ludo & Vanhoof, Koen, 2004. "Bankruptcy prediction using a data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 526-532, April.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Mahajan, Jayashree, 1991. "A data envelopment analytic model for assessing the relative efficiency of the selling function," European Journal of Operational Research, Elsevier, vol. 53(2), pages 189-205, July.
    14. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    15. R G Dyson & E A Shale, 2010. "Data envelopment analysis, operational research and uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 25-34, January.
    16. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    17. Kinsey, Jean, 1981. "Determinants of Credit Card Accounts: An Application of Tobit Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(2), pages 172-182, September.
    18. William H. Greene, 1992. "A Statistical Model for Credit Scoring," Working Papers 92-29, New York University, Leonard N. Stern School of Business, Department of Economics.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    21. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    22. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    23. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    24. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    25. Lucia Dunn & TaeHyung Kim, 1999. "Empirical Investigation of Credit Card Default," Working Papers 99-13, Ohio State University, Department of Economics.
    26. Insik Min & Jong-Ho Kim, 2003. "Modeling Credit Card Borrowing: A Comparison of Type I and Type II Tobit Approaches," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 128-143, July.
    27. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitra, Sovan & Karathanasopoulos, Andreas & Sermpinis, Georgios & Dunis, Christian & Hood, John, 2015. "Operational risk: Emerging markets, sectors and measurement," European Journal of Operational Research, Elsevier, vol. 241(1), pages 122-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    4. Massimo Finocchiaro Castro & Calogero Guccio & Ilde Rizzo, 2014. "An assessment of the waste effects of corruption on infrastructure provision," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 21(4), pages 813-843, August.
    5. Touati-Tliba, Mohamed, 2024. "Comparative performance of Algeria's education districts: The Influence of colonial legacy through cultural capital," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    6. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    7. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    8. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    9. Ohene-Asare, Kwaku & Turkson, Charles & Afful-Dadzie, Anthony, 2017. "Multinational operation, ownership and efficiency differences in the international oil industry," Energy Economics, Elsevier, vol. 68(C), pages 303-312.
    10. Manuel Salas-Velasco, 2020. "Measuring and explaining the production efficiency of Spanish universities using a non-parametric approach and a bootstrapped-truncated regression," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 825-846, February.
    11. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    12. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    13. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    14. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    15. O'Neill, Liam & Rauner, Marion & Heidenberger, Kurt & Kraus, Markus, 2008. "A cross-national comparison and taxonomy of DEA-based hospital efficiency studies," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 158-189, September.
    16. Oliver Tiemann & Jonas Schreyögg, 2012. "Changes in hospital efficiency after privatization," Health Care Management Science, Springer, vol. 15(4), pages 310-326, December.
    17. H餩 Essid & Pierre Ouellette & St鰨ane Vigeant, 2013. "Small is not that beautiful after all: measuring the scale efficiency of Tunisian high schools using a DEA-bootstrap method," Applied Economics, Taylor & Francis Journals, vol. 45(9), pages 1109-1120, March.
    18. A. M. Theodoridis & A. Psychoudakis, 2008. "Efficiency Measurement in Greek Dairy Farms: Stochastic Frontier vs. Data Envelopment Analysis," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 1(2), pages 53-67, December.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    20. Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:2:p:425-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.