IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v34y2015i5p627-645.html
   My bibliography  Save this article

The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter

Author

Listed:
  • Liye Ma

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Baohong Sun

    (Cheung Kong Graduate School of Business, New York, New York 10022)

  • Sunder Kekre

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

Firms are increasingly engaging with customers on social media. Despite this heightened interest, guidance for effective engagement is lacking. In this study, we investigate customers’ compliments and complaints and firms’ service interventions on social media. We develop a dynamic choice model that explicitly accounts for the evolutions of both customers’ voicing decisions and their relationships with the firm. Voices are driven by both the customers’ underlying relationships and other factors such as redress seeking. We estimate the model using a unique data set of customer voices and service interventions on Twitter. We find that redress seeking is a major driver of customer complaints, and although service intervention improves relationships, it also encourages more complaints later. Because of this dual effect, firms are likely to underestimate the returns on service intervention if measured using only voices. Furthermore, we find an “error-correction” effect in certain situations, where customers compliment or complain when others voice the opposite opinions. Finally, we characterize the distinct voicing tendencies in different relationship states, and show that uncovering the underlying relationship states enables effective targeting. We are among the first to analyze individual customer level voice dynamics and to evaluate the effects of service intervention on social media.

Suggested Citation

  • Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
  • Handle: RePEc:inm:ormksc:v:34:y:2015:i:5:p:627-645
    DOI: 10.1287/mksc.2015.0912
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2015.0912
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2015.0912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard J. Jansen & Mimi Zhang & Kate Sobel & Abdur Chowdury, 2009. "Twitter power: Tweets as electronic word of mouth," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2169-2188, November.
    2. Sha Yang & Mantian (Mandy) Hu & Russell S. Winer & Henry Assael & Xiaohong Chen, 2012. "An Empirical Study of Word-of-Mouth Generation and Consumption," Marketing Science, INFORMS, vol. 31(6), pages 952-963, November.
    3. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    4. Olivier Toubia & Andrew T. Stephen, 2013. "Intrinsic vs. Image-Related Utility in Social Media: Why Do People Contribute Content to Twitter?," Marketing Science, INFORMS, vol. 32(3), pages 368-392, May.
    5. Smith, Andrew N. & Fischer, Eileen & Yongjian, Chen, 2012. "How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter?," Journal of Interactive Marketing, Elsevier, vol. 26(2), pages 102-113.
    6. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    7. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    8. Ann E. Schlosser, 2005. "Posting versus Lurking: Communicating in a Multiple Audience Context," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 32(2), pages 260-265, September.
    9. V. Kumar & Vikram Bhaskaran & Rohan Mirchandani & Milap Shah, 2013. "Practice Prize Winner ---Creating a Measurable Social Media Marketing Strategy: Increasing the Value and ROI of Intangibles and Tangibles for Hokey Pokey," Marketing Science, INFORMS, vol. 32(2), pages 194-212, March.
    10. Shyam Gopinath & Jacquelyn S. Thomas & Lakshman Krishnamurthi, 2014. "Investigating the Relationship Between the Content of Online Word of Mouth, Advertising, and Brand Performance," Marketing Science, INFORMS, vol. 33(2), pages 241-258, March.
    11. Paulo Albuquerque & Polykarpos Pavlidis & Udi Chatow & Kay-Yut Chen & Zainab Jamal, 2012. "Evaluating Promotional Activities in an Online Two-Sided Market of User-Generated Content," Marketing Science, INFORMS, vol. 31(3), pages 406-432, May.
    12. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    13. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    14. Wendy W. Moe & David A. Schweidel, 2012. "Online Product Opinions: Incidence, Evaluation, and Evolution," Marketing Science, INFORMS, vol. 31(3), pages 372-386, May.
    15. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
    16. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    17. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    18. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    19. Garrett P. Sonnier & Leigh McAlister & Oliver J. Rutz, 2011. "A Dynamic Model of the Effect of Online Communications on Firm Sales," Marketing Science, INFORMS, vol. 30(4), pages 702-716, July.
    20. David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kannan, P.K. & Li, Hongshuang “Alice”, 2017. "Digital marketing: A framework, review and research agenda," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 22-45.
    2. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    3. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    4. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    5. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    6. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    7. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    8. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    9. Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
    10. S. Cicognani & P. Figini & M. Magnani, 2016. "Social Influence Bias in Online Ratings: A Field Experiment," Working Papers wp1060, Dipartimento Scienze Economiche, Universita' di Bologna.
    11. Xingyu Chen & Xing Li & Dai Yao & Zhimin Zhou, 2019. "Seeking the support of the silent majority: are lurking users valuable to UGC platforms?," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 986-1004, November.
    12. Saeed Tajdini, 2023. "The effects of internet search intensity for products on companies’ stock returns: a competitive intelligence perspective," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 352-365, September.
    13. Antioco, Michael & Coussement, Kristof, 2018. "Misreading of consumer dissatisfaction in online product reviews: Writing style as a cause for bias," International Journal of Information Management, Elsevier, vol. 38(1), pages 301-310.
    14. Guiyang Xiong & Sundar Bharadwaj, 2014. "Prerelease Buzz Evolution Patterns and New Product Performance," Marketing Science, INFORMS, vol. 33(3), pages 401-421, May.
    15. Peters, Kay & Chen, Yubo & Kaplan, Andreas M. & Ognibeni, Björn & Pauwels, Koen, 2013. "Social Media Metrics — A Framework and Guidelines for Managing Social Media," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 281-298.
    16. Linyi Li & Shyam Gopinath & Stephen J. Carson, 2022. "History Matters: The Impact of Online Customer Reviews Across Product Generations," Management Science, INFORMS, vol. 68(5), pages 3878-3903, May.
    17. Lu, Shijie & Xie, Ying & Chen, Xingyu, 2023. "Immediate and enduring effects of digital badges on online content consumption and generation," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 146-163.
    18. Zhijie Lin & Ying Zhang & Yong Tan, 2019. "An Empirical Study of Free Product Sampling and Rating Bias," Service Science, INFORMS, vol. 30(1), pages 260-275, March.
    19. Young-Jin Lee & Kartik Hosanagar & Yong Tan, 2015. "Do I Follow My Friends or the Crowd? Information Cascades in Online Movie Ratings," Management Science, INFORMS, vol. 61(9), pages 2241-2258, September.
    20. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:34:y:2015:i:5:p:627-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.