IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v54y2024i3p222-240.html
   My bibliography  Save this article

Hybrid Scheduling with Mixed-Integer Programming at Columbia Business School

Author

Listed:
  • Ciamac C. Moallemi

    (Division of Decision, Risk and Operations, Graduate School of Business, Columbia University, New York, New York 10027)

  • Utkarsh Patange

    (Division of Decision, Risk and Operations, Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We describe the hybrid scheduling system that we implemented at Columbia Business School during the COVID-19 pandemic. The system allows some students to attend in-person classes with social distancing while their peers attend online, and schedules vary by day. We consider two variations of this problem: one in which students have unique, individualized class enrollments and one in which they are grouped in teams that are enrolled in identical classes. We formulate both problems as mixed-integer programs. In the first setting, students who are scheduled to attend all classes in person on a given day may, at times, be required to attend a particular class on that day online because of social distancing constraints. We count these instances as “excess.” We minimize excess and related objectives and analyze and solve the relaxed linear program. In the second setting, we schedule the teams so that each team’s in-person attendance is balanced over days of the week and spread out over the entire term. Our objective is to maximize interaction between different teams. Our program was used to schedule more than 2,500 students in student-level scheduling and about 790 students in team-level scheduling from the fall 2020 through summer 2021 terms at Columbia Business School.

Suggested Citation

  • Ciamac C. Moallemi & Utkarsh Patange, 2024. "Hybrid Scheduling with Mixed-Integer Programming at Columbia Business School," Interfaces, INFORMS, vol. 54(3), pages 222-240, May.
  • Handle: RePEc:inm:orinte:v:54:y:2024:i:3:p:222-240
    DOI: 10.1287/inte.2022.0070
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2022.0070
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2022.0070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Asín Achá & Robert Nieuwenhuis, 2014. "Curriculum-based course timetabling with SAT and MaxSAT," Annals of Operations Research, Springer, vol. 218(1), pages 71-91, July.
    2. John J. Dinkel & John Mote & M. A. Venkataramanan, 1989. "OR Practice—An Efficient Decision Support System for Academic Course Scheduling," Operations Research, INFORMS, vol. 37(6), pages 853-864, December.
    3. Erick Guerra & Andrew Sandweiss & Seunglee David Park, 2022. "Does rationing really backfire? A critical review of the literature on license-plate-based driving restrictions," Transport Reviews, Taylor & Francis Journals, vol. 42(5), pages 604-625, September.
    4. Ofer Strichman, 2017. "Near-Optimal Course Scheduling at the Technion," Interfaces, INFORMS, vol. 47(6), pages 537-554, December.
    5. Arabinda Tripathy, 1984. "School Timetabling---A Case in Large Binary Integer Linear Programming," Management Science, INFORMS, vol. 30(12), pages 1473-1489, December.
    6. Clarence H. Martin, 2004. "Ohio University's College of Business Uses Integer Programming to Schedule Classes," Interfaces, INFORMS, vol. 34(6), pages 460-465, December.
    7. Gongyu Chen & Xinyu Fei & Huiwen Jia & Xian Yu & Siqian Shen, 2022. "The University of Michigan Implements a Hub-and-Spoke Design to Accommodate Social Distancing in the Campus Bus System Under COVID-19 Restrictions," Interfaces, INFORMS, vol. 52(6), pages 539-552, November.
    8. Jan Stallaert, 1997. "Automated Timetabling Improves Course Scheduling at UCLA," Interfaces, INFORMS, vol. 27(4), pages 67-81, August.
    9. Timothy R. Hinkin & Gary M. Thompson, 2002. "SchedulExpert: Scheduling Courses in the Cornell University School of Hotel Administration," Interfaces, INFORMS, vol. 32(6), pages 45-57, December.
    10. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    11. Beaumont, Nicholas, 1997. "Scheduling staff using mixed integer programming," European Journal of Operational Research, Elsevier, vol. 98(3), pages 473-484, May.
    12. Álvaro García-Sánchez & Araceli Hernández & Eduardo Caro & Gonzalo Jiménez, 2019. "Universidad Politécnica de Madrid Uses Integer Programming for Scheduling Weekly Assessment Activities," Interfaces, INFORMS, vol. 49(2), pages 104-116, March.
    13. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    14. Hoda Atef Yekta & Robert Day, 2020. "Optimization-based Mechanisms for the Course Allocation Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 641-660, July.
    15. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "Rejoinder on: an overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 366-368, July.
    16. Michael W. Carter & Craig A. Tovey, 1992. "When Is the Classroom Assignment Problem Hard?," Operations Research, INFORMS, vol. 40(1-supplem), pages 28-39, February.
    17. Gerardo Gonzalez & Christopher Richards & Alexandra Newman, 2018. "Optimal Course Scheduling for United States Air Force Academy Cadets," Interfaces, INFORMS, vol. 48(3), pages 217-234, June.
    18. Amy B. Gore & Mary E. Kurz & Matthew J. Saltzman & Blake Splitter & William C. Bridges & Neil J. Calkin, 2022. "Clemson University’s Rotational Attendance Plan During COVID-19," Interfaces, INFORMS, vol. 52(6), pages 553-567, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    2. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    3. Amy B. Gore & Mary E. Kurz & Matthew J. Saltzman & Blake Splitter & William C. Bridges & Neil J. Calkin, 2022. "Clemson University’s Rotational Attendance Plan During COVID-19," Interfaces, INFORMS, vol. 52(6), pages 553-567, November.
    4. Cristian D. Palma & Patrick Bornhardt, 2020. "Considering Section Balance in an Integer Optimization Model for the Curriculum-Based Course Timetabling Problem," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    5. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    6. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    7. Christopher Garcia, 2019. "Practice Summary: Managing Capacity at the University of Mary Washington’s College of Business," Interfaces, INFORMS, vol. 49(2), pages 167-171, March.
    8. Boronico, Jess, 2000. "Quantitative modeling and technology driven departmental course scheduling," Omega, Elsevier, vol. 28(3), pages 327-346, June.
    9. Seizinger, Markus & Brunner, Jens O., 2023. "Optimized planning of nursing curricula in dual vocational schools focusing on the German health care system," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1223-1241.
    10. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    11. R. Alan Bowman, 2021. "Developing Optimal Student Plans of Study," Interfaces, INFORMS, vol. 51(6), pages 409-421, November.
    12. Lindahl, Michael & Stidsen, Thomas & Sørensen, Matias, 2019. "Quality recovering of university timetables," European Journal of Operational Research, Elsevier, vol. 276(2), pages 422-435.
    13. Clarence H. Martin, 2004. "Ohio University's College of Business Uses Integer Programming to Schedule Classes," Interfaces, INFORMS, vol. 34(6), pages 460-465, December.
    14. Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
    15. Daskalaki, S. & Birbas, T., 2005. "Efficient solutions for a university timetabling problem through integer programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 106-120, January.
    16. Jaime Miranda, 2010. "eClasSkeduler: A Course Scheduling System for the Executive Education Unit at the Universidad de Chile," Interfaces, INFORMS, vol. 40(3), pages 196-207, June.
    17. Kadri Sylejmani & Edon Gashi & Adrian Ymeri, 2023. "Simulated annealing with penalization for university course timetabling," Journal of Scheduling, Springer, vol. 26(5), pages 497-517, October.
    18. Niels-Christian F. Bagger & Simon Kristiansen & Matias Sørensen & Thomas R. Stidsen, 2019. "Flow formulations for curriculum-based course timetabling," Annals of Operations Research, Springer, vol. 280(1), pages 121-150, September.
    19. Janice K. Winch & Jack Yurkiewicz, 2014. "Case Article—Class Scheduling with Linear Programming," INFORMS Transactions on Education, INFORMS, vol. 15(1), pages 143-147, September.
    20. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:54:y:2024:i:3:p:222-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.