IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v25y2022i4d10.1007_s10951-021-00715-5.html
   My bibliography  Save this article

A mixed-integer programming approach for solving university course timetabling problems

Author

Listed:
  • Efstratios Rappos

    (University of Applied Sciences of Western Switzerland (HES-SO))

  • Eric Thiémard

    (University of Applied Sciences of Western Switzerland (HES-SO))

  • Stephan Robert

    (University of Applied Sciences of Western Switzerland (HES-SO))

  • Jean-François Hêche

    (University of Applied Sciences of Western Switzerland (HES-SO))

Abstract

This article presents a mixed-integer programming model for solving the university timetabling problem which considers the allocation of students to classes and the assignment of rooms and time periods to each class. The model was developed as part of our participation in the International Timetabling Competition 2019 and produced a ranking of second place at the competition. Modeling a timetabling problem as a mixed-integer program is not new. Our contribution rests on a number of innovative features adapted to this problem which allow for a reduction in the number of variables and constraints of the mixed-integer program to manageable levels achieving a reasonable computational performance. The proposed algorithm consists of a first-stage method to obtain an initial feasible solution and a second-stage local search procedure to iteratively improve the solution value, both of which involve the optimization of mixed-integer programming problems.

Suggested Citation

  • Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
  • Handle: RePEc:spr:jsched:v:25:y:2022:i:4:d:10.1007_s10951-021-00715-5
    DOI: 10.1007/s10951-021-00715-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-021-00715-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-021-00715-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. de Werra, D., 1985. "An introduction to timetabling," European Journal of Operational Research, Elsevier, vol. 19(2), pages 151-162, February.
    3. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    4. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    5. Michael Lindahl & Matias Sørensen & Thomas R. Stidsen, 2018. "A fix-and-optimize matheuristic for university timetabling," Journal of Heuristics, Springer, vol. 24(4), pages 645-665, August.
    6. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    7. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    8. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "Rejoinder on: an overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 366-368, July.
    9. Alex Bonutti & Fabio Cesco & Luca Gaspero & Andrea Schaerf, 2012. "Benchmarking curriculum-based course timetabling: formulations, data formats, instances, validation, visualization, and results," Annals of Operations Research, Springer, vol. 194(1), pages 59-70, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunil B. Bhoi & Jayesh M. Dhodiya, 2024. "Multi-objective faculty course assignment problem based on the double parametric form of fuzzy preferences," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 1-16.
    2. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    3. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    2. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    3. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    4. R. A. Oude Vrielink & E. A. Jansen & E. W. Hans & J. Hillegersberg, 2019. "Practices in timetabling in higher education institutions: a systematic review," Annals of Operations Research, Springer, vol. 275(1), pages 145-160, April.
    5. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    6. Lindahl, Michael & Stidsen, Thomas & Sørensen, Matias, 2019. "Quality recovering of university timetables," European Journal of Operational Research, Elsevier, vol. 276(2), pages 422-435.
    7. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    8. Niels-Christian F. Bagger & Simon Kristiansen & Matias Sørensen & Thomas R. Stidsen, 2019. "Flow formulations for curriculum-based course timetabling," Annals of Operations Research, Springer, vol. 280(1), pages 121-150, September.
    9. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    10. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    11. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    12. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    13. Rasmus Ø. Mikkelsen & Dennis S. Holm, 2022. "A parallelized matheuristic for the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 429-452, August.
    14. Niels-Christian Fink Bagger & Guy Desaulniers & Jacques Desrosiers, 2019. "Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem," Journal of Scheduling, Springer, vol. 22(2), pages 155-172, April.
    15. Cristian D. Palma & Patrick Bornhardt, 2020. "Considering Section Balance in an Integer Optimization Model for the Curriculum-Based Course Timetabling Problem," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    16. Michael Lindahl & Matias Sørensen & Thomas R. Stidsen, 2018. "A fix-and-optimize matheuristic for university timetabling," Journal of Heuristics, Springer, vol. 24(4), pages 645-665, August.
    17. Ciamac C. Moallemi & Utkarsh Patange, 2024. "Hybrid Scheduling with Mixed-Integer Programming at Columbia Business School," Interfaces, INFORMS, vol. 54(3), pages 222-240, May.
    18. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    19. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    20. Oliver Czibula & Hanyu Gu & Aaron Russell & Yakov Zinder, 2017. "A multi-stage IP-based heuristic for class timetabling and trainer rostering," Annals of Operations Research, Springer, vol. 252(2), pages 305-333, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:25:y:2022:i:4:d:10.1007_s10951-021-00715-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.