Front Range Aggregates Optimizes Feeder Movements at Its Quarry
Author
Abstract
Suggested Citation
DOI: 10.1287/inte.1080.0403
Download full text from publisher
References listed on IDEAS
- Marius Solomon & Alain Chalifour & Jacques Desrosiers & Jacques Boisvert, 1992. "An Application of Vehicle-Routing Methodology to Large-Scale Larvicide Control Programs," Interfaces, INFORMS, vol. 22(3), pages 88-99, June.
- W. Matthew Carlyle & B. Curtis Eaves, 2001. "Underground Planning at Stillwater Mining Company," Interfaces, INFORMS, vol. 31(4), pages 50-60, August.
- Underwood, Robert & Tolwinski, Boleslaw, 1998. "A mathematical programming viewpoint for solving the ultimate pit problem," European Journal of Operational Research, Elsevier, vol. 107(1), pages 96-107, May.
- Jeffrey L. Huisingh & Harold M. Yamauchi & Randy Zimmerman, 2001. "Saving Federal Travel Dollars," Interfaces, INFORMS, vol. 31(5), pages 13-23, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
- Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
- Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
- King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
- Mark Kuchta & Alexandra Newman & Erkan Topal, 2004. "Implementing a Production Schedule at LKAB's Kiruna Mine," Interfaces, INFORMS, vol. 34(2), pages 124-134, April.
- Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
- O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
- M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
- Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
- Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
- Jinming Liu & Guoting Zhang & Lining Xing & Weihua Qi & Yingwu Chen, 2022. "An Exact Algorithm for Multi-Task Large-Scale Inter-Satellite Routing Problem with Time Windows and Capacity Constraints," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
- W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
- Jurdziak, Leszek, 2006. "Negocjacje pomiędzy kopalnią węgla brunatnego a elektrownią jako kooperacyjna, dwuetapowa gra dwuosobowa o sumie niezerowej," MPRA Paper 478, University Library of Munich, Germany, revised 20 Feb 2000.
- Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
- Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
- Furtado e Faria, Matheus & Dimitrakopoulos, Roussos & Lopes Pinto, Cláudio Lúcio, 2022. "Integrated stochastic optimization of stope design and long-term underground mine production scheduling," Resources Policy, Elsevier, vol. 78(C).
- Chimunhu, Prosper & Topal, Erkan & Ajak, Ajak Duany & Asad, Waqar, 2022. "A review of machine learning applications for underground mine planning and scheduling," Resources Policy, Elsevier, vol. 77(C).
- Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
- Yifei Zhao & Jianhong Chen & Shan Yang & Yi Chen, 2022. "Mining Plan Optimization of Multi-Metal Underground Mine Based on Adaptive Hybrid Mutation PSO Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Dónal O’Sullivan & Alexandra Newman, 2014. "Extraction and Backfill Scheduling in a Complex Underground Mine," Interfaces, INFORMS, vol. 44(2), pages 204-221, April.
- Xin Li & Sangen Hu & Wenbo Fan & Kai Deng, 2018. "Modeling an enhanced ridesharing system with meet points and time windows," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
- Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
More about this item
Keywords
optimization; network models; shortest-path models; applications; quarry-mining operations; production planning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:38:y:2008:i:6:p:436-447. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.