IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i2p456-478.html
   My bibliography  Save this article

Flexible Differentiable Optimization via Model Transformations

Author

Listed:
  • Mathieu Besançon

    (Zuse Institute Berlin, Berlin 14195, Germany)

  • Joaquim Dias Garcia

    (PSR, Rio de Janeiro, 22250-040 Rio de Janeiro, Brazil; Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22451-900 Rio de Janeiro, Brazil)

  • Benoît Legat

    (KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytic, 3001 Leuven, Belgium)

  • Akshay Sharma

    (Columbia University, New York, New York 10027)

Abstract

We introduce DiffOpt.jl, a Julia library to differentiate through the solution of optimization problems with respect to arbitrary parameters present in the objective and/or constraints. The library builds upon MathOptInterface, thus leveraging the rich ecosystem of solvers and composing well with modeling languages like JuMP. DiffOpt offers both forward and reverse differentiation modes, enabling multiple use cases from hyperparameter optimization to backpropagation and sensitivity analysis, bridging constrained optimization with end-to-end differentiable programming. DiffOpt is built on two known rules for differentiating quadratic programming and conic programming standard forms. However, thanks to its ability to differentiate through model transformations, the user is not limited to these forms and can differentiate with respect to the parameters of any model that can be reformulated into these standard forms. This notably includes programs mixing affine conic constraints and convex quadratic constraints or objective function.

Suggested Citation

  • Mathieu Besançon & Joaquim Dias Garcia & Benoît Legat & Akshay Sharma, 2024. "Flexible Differentiable Optimization via Model Transformations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 456-478, March.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:456-478
    DOI: 10.1287/ijoc.2022.0283
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0283
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benoît Legat & Oscar Dowson & Joaquim Dias Garcia & Miles Lubin, 2022. "MathOptInterface: A Data Structure for Mathematical Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 672-689, March.
    2. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    3. Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
    4. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    2. Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
    3. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    4. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    5. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    6. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    7. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    8. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    9. Florian Schwendinger & Bettina Grün & Kurt Hornik, 2021. "A comparison of optimization solvers for log binomial regression including conic programming," Computational Statistics, Springer, vol. 36(3), pages 1721-1754, September.
    10. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    11. Joaquim Dias Garcia & Guilherme Bodin & Alexandre Street, 2024. "BilevelJuMP.jl: Modeling and Solving Bilevel Optimization Problems in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 327-335, March.
    12. Jinhak Kim & Mohit Tawarmalani & Jean-Philippe P. Richard, 2019. "Convexification of Permutation-Invariant Sets," Purdue University Economics Working Papers 1315, Purdue University, Department of Economics.
    13. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    14. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    15. Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
    16. Benoît Legat & Oscar Dowson & Joaquim Dias Garcia & Miles Lubin, 2022. "MathOptInterface: A Data Structure for Mathematical Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 672-689, March.
    17. Run Chen & Andrew L. Liu, 2021. "A distributed algorithm for high-dimension convex quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 80(3), pages 781-830, December.
    18. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    19. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    20. Nicholas Moehle & Mykel J. Kochenderfer & Stephen Boyd & Andrew Ang, 2021. "Tax-Aware Portfolio Construction via Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 364-383, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:456-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.