IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v166y2022icp333-347.html
   My bibliography  Save this article

Evaluating port efficiency dynamics: A risk-based approach

Author

Listed:
  • Sun, Qinghe
  • Chen, Li
  • Meng, Qiang

Abstract

This study proposes a new methodology to quantify the efficiency dynamics of a port over time. While efficiency evaluation has gained full attention in port management, researchers conducting related studies are challenged by temporal variations observed in the collected data. Existing approaches have almost exclusively relied on multivariate normal distributional assumptions of the input and output data, but empirical evidence from real data shows that the port operations data demonstrate long-tail distributions and violate the distributional assumptions. In addition, many existing models are intractable (non-convex) or lack interpretability. Motivated by these challenges, we develop an optimization-based approach for efficiency measurement under uncertainty that is compatible with the conventional non-parametric method. In particular, inspired by the coherent risk measure, we create a risk-based index to measure the efficiency of any operating unit by comparing its observations against a benchmark that is guaranteed to be production possible under a certain risk level. To facilitate the computation of the index, we develop a risk-based port efficiency evaluation (RPE) model, which can be reformulated as an exponential cone program (ECP) and solved efficiently by off-the-shelf solvers. We test our model for a multipurpose port on a real dataset of 3,394 observations showing the proposed approach’s merits. We find that the port productivity peaks on Tuesday and Saturday and troughs on Friday. We also provide evidence for the Chinese New Year effect from a port management perspective and draw managerial insights from the study.

Suggested Citation

  • Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
  • Handle: RePEc:eee:transb:v:166:y:2022:i:c:p:333-347
    DOI: 10.1016/j.trb.2022.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    3. Tongzon, Jose, 2001. "Efficiency measurement of selected Australian and other international ports using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 107-122, February.
    4. Clark, Ximena & Dollar, David & Micco, Alejandro, 2004. "Port efficiency, maritime transport costs, and bilateral trade," Journal of Development Economics, Elsevier, vol. 75(2), pages 417-450, December.
    5. Dervaux, Benoît & Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1998. "Radial and nonradial static efficiency decompositions: a focus on congestion measurement," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 299-312, June.
    6. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    7. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    8. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    9. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Olaf Merk & Thai-Thanh Dang, 2012. "Efficiency of World Ports in Container and Bulk Cargo (oil, coal, ores and grain)," OECD Regional Development Working Papers 2012/9, OECD Publishing.
    12. Suárez-Alemán, Ancor & Morales Sarriera, Javier & Serebrisky, Tomás & Trujillo, Lourdes, 2016. "When it comes to container port efficiency, are all developing regions equal?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 56-77.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    15. Woo, Su-Han & Pettit, Stephen J. & Kwak, Dong-Wook & Beresford, Anthony K.C., 2011. "Seaport research: A structured literature review on methodological issues since the 1980s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 667-685, August.
    16. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    17. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    18. Yuen, Andrew Chi-lok & Zhang, Anming & Cheung, Waiman, 2013. "Foreign participation and competition: A way to improve the container port efficiency in China?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 220-231.
    19. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    20. Lederman, Roger & Wynter, Laura, 2011. "Real-time traffic estimation using data expansion," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1062-1079, August.
    21. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    22. Cullinane Kevin & Song Dong-Wook & Ji Ping & Wang Teng-Fei, 2004. "An Application of DEA Windows Analysis to Container Port Production Efficiency," Review of Network Economics, De Gruyter, vol. 3(2), pages 1-23, June.
    23. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    24. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    25. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    26. Wenming Shi & Kevin X. Li, 2017. "Themes and tools of maritime transport research during 2000-2014," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(2), pages 151-169, February.
    27. Assaf, A. George & Gillen, David & Tsionas, Efthymios G., 2014. "Understanding relative efficiency among airports: A general dynamic model for distinguishing technical and allocative efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 18-34.
    28. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    29. Viton, Philip A., 1997. "Technical efficiency in multi-mode bus transit: A production frontier analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 23-39, February.
    30. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Siying & Cai, Yutong & Wang, Mengtong & Wang, Hua & Meng, Qiang, 2023. "How will China–Singapore International Land–Sea Trade Corridor affect route choice behaviour? A discrete choice model," Transport Policy, Elsevier, vol. 144(C), pages 11-22.
    2. Yan, Ran & Liu, Yan & Wang, Shuaian, 2024. "A data-driven optimization approach to improving maritime transport efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    2. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    3. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    4. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    5. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    6. Nicole Adler & Georg Hirte & Shravana Kumar & Hans-Martin Niemeier, 2022. "The impact of specialization, ownership, competition and regulation on efficiency: a case study of Indian seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 507-536, September.
    7. Merkel, Axel & Holmgren, Johan, 2017. "Dredging the depths of knowledge: Efficiency analysis in the maritime port sector," Transport Policy, Elsevier, vol. 60(C), pages 63-74.
    8. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    9. Rabeb KAMMOUN & Souhir ABBES, 2020. "The technical efficiency of Tunisian ports: Comparing data envelopment analysis and stochastic frontier analysis scores," Romanian Journal of Economics, Institute of National Economy, vol. 51(2(60)), pages 83-102, December.
    10. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    11. Claudio Quintano & Paolo Mazzocchi & Antonella Rocca, 2020. "A competitive analysis of EU ports by fixing spatial and economic dimensions," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-19, December.
    12. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    13. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    14. Evelin Krmac & Mozhgan Mansouri Kaleibar, 2023. "A comprehensive review of data envelopment analysis (DEA) methodology in port efficiency evaluation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 817-881, December.
    15. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    16. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    17. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    18. Hong-Oanh Nguyen & Hong-Van Nguyen & Young-Tae Chang & Anthony T. H. Chin & Jose Tongzon, 2016. "Measuring port efficiency using bootstrapped DEA: the case of Vietnamese ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(5), pages 644-659, July.
    19. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    20. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:166:y:2022:i:c:p:333-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.