Alfonso: Matlab Package for Nonsymmetric Conic Optimization
Author
Abstract
Suggested Citation
DOI: 10.1287/ijoc.2021.1058
Download full text from publisher
References listed on IDEAS
- F. Glineur & T. Terlaky, 2004.
"Conic Formulation for l p -Norm Optimization,"
Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
- GLINEUR, François & TERLAKY, Tamas, 2004. "Conic formulation for lp-norm optimization," LIDAM Reprints CORE 1726, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
- Robert Chares & François Glineur, 2008.
"An interior-point method for the single-facility location problem with mixed norms using a conic formulation,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
- CHARES, Robert & GLINEUR, François, 2007. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Discussion Papers CORE 2007071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- CHARES, Robert & GLINEUR, François, 2009. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Reprints CORE 2078, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
- da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023.
"Risk budgeting portfolios from simulations,"
European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
- Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
- Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
- Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
- Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
- Florian Schwendinger & Bettina Grün & Kurt Hornik, 2021. "A comparison of optimization solvers for log binomial regression including conic programming," Computational Statistics, Springer, vol. 36(3), pages 1721-1754, September.
- Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
- Jinhak Kim & Mohit Tawarmalani & Jean-Philippe P. Richard, 2019. "Convexification of Permutation-Invariant Sets," Purdue University Economics Working Papers 1315, Purdue University, Department of Economics.
- Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
- Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
- Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
- F. Glineur & T. Terlaky, 2004.
"Conic Formulation for l p -Norm Optimization,"
Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
- GLINEUR, François & TERLAKY, Tamas, 2004. "Conic formulation for lp-norm optimization," LIDAM Reprints CORE 1726, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Benoît Legat & Oscar Dowson & Joaquim Dias Garcia & Miles Lubin, 2022. "MathOptInterface: A Data Structure for Mathematical Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 672-689, March.
- Run Chen & Andrew L. Liu, 2021. "A distributed algorithm for high-dimension convex quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 80(3), pages 781-830, December.
- Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
- Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
- Yue Lu & Ching-Yu Yang & Jein-Shan Chen & Hou-Duo Qi, 2020. "The decompositions with respect to two core non-symmetric cones," Journal of Global Optimization, Springer, vol. 76(1), pages 155-188, January.
More about this item
Keywords
conic optimization; interior-point method; self-concordant barrier; nonsymmetric cone; software;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:11-19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.