IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p11-19.html
   My bibliography  Save this article

Alfonso: Matlab Package for Nonsymmetric Conic Optimization

Author

Listed:
  • Dávid Papp

    (Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695)

  • Sercan Yıldız

    (Product Analytics, Qontigo, New York, New York 10004)

Abstract

We present alfonso , an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: O ( ν log ⁡ ( 1 / ε ) ) iterations to reach an ε -optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2.

Suggested Citation

  • Dávid Papp & Sercan Yıldız, 2022. "Alfonso: Matlab Package for Nonsymmetric Conic Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 11-19, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:11-19
    DOI: 10.1287/ijoc.2021.1058
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1058
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Glineur & T. Terlaky, 2004. "Conic Formulation for l p -Norm Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
    2. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
    2. Lea Kapelevich & Erling D. Andersen & Juan Pablo Vielma, 2024. "Computing Conjugate Barrier Information for Nonsymmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 271-295, July.
    3. Botond Bertok & Péter Biró & Marianna E.-Nagy, 2024. "Overview of Hungarian operations research based on the VOCAL 2022 conference," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 897-902, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    2. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    3. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    4. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    5. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    6. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    7. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    8. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    9. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    10. Run Chen & Andrew L. Liu, 2021. "A distributed algorithm for high-dimension convex quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 80(3), pages 781-830, December.
    11. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    12. Jinchuan Zhou & Yu-Lin Chang & Jein-Shan Chen, 2015. "The H-differentiability and calmness of circular cone functions," Journal of Global Optimization, Springer, vol. 63(4), pages 811-833, December.
    13. Michael Garstka & Mark Cannon & Paul Goulart, 2021. "COSMO: A Conic Operator Splitting Method for Convex Conic Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 779-810, September.
    14. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    15. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    16. Mathieu Besançon & Joaquim Dias Garcia & Benoît Legat & Akshay Sharma, 2024. "Flexible Differentiable Optimization via Model Transformations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 456-478, March.
    17. Oviedo-Cepeda, J.C. & Serna-Suárez, Ivan & Osma-Pinto, German & Duarte, Cesar & Solano, Javier & Gabbar, Hossam A., 2020. "Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning," Energy, Elsevier, vol. 211(C).
    18. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.
    19. Baha Alzalg, 2016. "The Algebraic Structure of the Arbitrary-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 32-49, April.
    20. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.