IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1262-1276.html
   My bibliography  Save this article

SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning

Author

Listed:
  • Frank de Meijer

    (CentER, Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands)

  • Renata Sotirov

    (CentER, Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands)

Abstract

We study the quadratic cycle cover problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the reduction and the structure of the graph, which is exploited in an efficient algorithm that constructs this matrix for any instance of the problem. To solve our relaxations, we propose an algorithm that incorporates an augmented Lagrangian method into a cutting-plane framework by utilizing Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP relaxations with a large number of cutting-planes. Computational results show that our SDP bounds and efficient cutting-plane algorithm outperform other QCCP bounding approaches from the literature. Finally, we provide several SDP-based upper bounding techniques, among which is a sequential Q-learning method that exploits a solution of our SDP relaxation within a reinforcement learning environment. Summary of Contribution: The quadratic cycle cover problem (QCCP) is the problem of finding a set of node-disjoint cycles covering all the nodes in a graph such that the total interaction cost between successive arcs is minimized. The QCCP has applications in many fields, among which are robotics, transportation, energy distribution networks, and automatic inspection. Besides this, the problem has a high theoretical relevance because of its close connection to the quadratic traveling salesman problem (QTSP). The QTSP has several applications, for example, in bioinformatics, and is considered to be among the most difficult combinatorial optimization problems nowadays. After removing the subtour elimination constraints, the QTSP boils down to the QCCP. Hence, an in-depth study of the QCCP also contributes to the construction of strong bounds for the QTSP. In this paper, we study the application of semidefinite programming (SDP) to obtain strong bounds for the QCCP. Our strongest SDP relaxation is very hard to solve by any SDP solver because of the large number of involved cutting-planes. Because of that, we propose a new approach in which an augmented Lagrangian method is incorporated into a cutting-plane framework by utilizing Dykstra’s projection algorithm. We emphasize an efficient implementation of the method and perform an extensive computational study. This study shows that our method is able to handle a large number of cuts and that the resulting bounds are currently the best QCCP bounds in the literature. We also introduce several upper bounding techniques, among which is a distributed reinforcement learning algorithm that exploits our SDP relaxations.

Suggested Citation

  • Frank de Meijer & Renata Sotirov, 2021. "SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1262-1276, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1262-1276
    DOI: 10.1287/ijoc.2021.1075
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1075
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Norbert Gaffke & Rudolf Mathar, 1989. "A cyclic projection algorithm via duality," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 36(1), pages 29-54, December.
    2. de Meijer, Frank & Sotirov, Renata, 2020. "The quadratic cycle cover problem : Special cases and efficient bounds," Other publications TiSEM 4833d34e-eece-48bc-bbf0-3, Tilburg University, School of Economics and Management.
    3. Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
    4. Philippe Galinier & Jin-Kao Hao, 1999. "Hybrid Evolutionary Algorithms for Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 379-397, December.
    5. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veronica Piccialli & Antonio M. Sudoso & Angelika Wiegele, 2022. "SOS-SDP: An Exact Solver for Minimum Sum-of-Squares Clustering," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2144-2162, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    2. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    3. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    4. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    5. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    6. C A Glass & A Prügel-Bennett, 2005. "A polynomially searchable exponential neighbourhood for graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 324-330, March.
    7. Valmir C. Barbosa & Carlos A.G. Assis & Josina O. Do Nascimento, 2004. "Two Novel Evolutionary Formulations of the Graph Coloring Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 41-63, March.
    8. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.
    9. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    10. Hertz, Alain & Widmer, Marino, 2003. "Guidelines for the use of meta-heuristics in combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 151(2), pages 247-252, December.
    11. Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.
    12. Hawa, Asyl L. & Lewis, Rhyd & Thompson, Jonathan M., 2022. "Exact and approximate methods for the score-constrained packing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 847-859.
    13. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    14. Caramia, Massimiliano & Dell'Olmo, Paolo, 2008. "Embedding a novel objective function in a two-phased local search for robust vertex coloring," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1358-1380, September.
    15. Chin How Jeffrey Pang, 2019. "Dykstra’s Splitting and an Approximate Proximal Point Algorithm for Minimizing the Sum of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1019-1049, September.
    16. Gnot, Stanislaw & Grzadziel, Mariusz, 2002. "Nonnegative Minimum Biased Quadratic Estimation in Mixed Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 217-233, February.
    17. Vincenzo Cutello & Giuseppe Nicosia & Mario Pavone, 2007. "An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem," Journal of Combinatorial Optimization, Springer, vol. 14(1), pages 9-33, July.
    18. Celia A. Glass & Adam Prügel-Bennett, 2003. "Genetic Algorithm for Graph Coloring: Exploration of Galinier and Hao's Algorithm," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 229-236, September.
    19. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    20. Avanthay, Cedric & Hertz, Alain & Zufferey, Nicolas, 2003. "A variable neighborhood search for graph coloring," European Journal of Operational Research, Elsevier, vol. 151(2), pages 379-388, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1262-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.