IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p385-406.html
   My bibliography  Save this article

Predictive Search for Capacitated Multi-Item Lot Sizing Problems

Author

Listed:
  • Tao Wu

    (School of Economics & Management, Tongji University, 200092 Shanghai, China)

Abstract

For capacitated multi-item lot sizing problems, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework. Advanced analytics can predict the probability that an event will happen and has been applied to pressing industry issues, such as credit scoring, risk management, and default management. Although little research has applied such technique for lot sizing problems, we observe that advanced analytics can uncover optimal patterns of setup variables given properties associated with the problems, such as problem attributes, and solution values yielded by linear programming relaxation, column generation, and Lagrangian relaxation. We, therefore, build advanced analytics models that yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to partition the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. The discussion is followed by computational tests, where comparisons with other methods indicate that our approach can obtain better results for the benchmark problems than other state-of-the-art methods. Summary of Contribution: In this study, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework for capacitated multi-item lot sizing problems. The advanced analytics models are used to yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to divide the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. Through computational tests based on benchmark problems, we observe that the proposed approach can obtain better results than other state-of-the-art methods.

Suggested Citation

  • Tao Wu, 2022. "Predictive Search for Capacitated Multi-Item Lot Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 385-406, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:385-406
    DOI: 10.1287/ijoc.2021.1073
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1073
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Almeder, Christian, 2010. "A hybrid optimization approach for multi-level capacitated lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 200(2), pages 599-606, January.
    2. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, vol. 35(3), pages 353-366, March.
    3. Peter J. Billington & John O. McClain & L. Joseph Thomas, 1983. "Mathematical Programming Approaches to Capacity-Constrained MRP Systems: Review, Formulation and Problem Reduction," Management Science, INFORMS, vol. 29(10), pages 1126-1141, October.
    4. Tao Wu & Leyuan Shi & Jie Song, 2012. "An MIP-based interval heuristic for the capacitated multi-level lot-sizing problem with setup times," Annals of Operations Research, Springer, vol. 196(1), pages 635-650, July.
    5. MILLER, Andrew & NEMHAUSER, George & SAVELSBERGH, Martin, 2000. "Solving multi-item capacitated lot-sizing problems with setup times by branch-and-cut," LIDAM Discussion Papers CORE 2000039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Millar, Harvey H. & Yang, Minzhu, 1994. "Lagrangian heuristics for the capacitated multi-item lot-sizing problem with backordering," International Journal of Production Economics, Elsevier, vol. 34(1), pages 1-15, February.
    7. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    8. Stadtler, Hartmut, 1997. "Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7096, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. BARANY, Imre & VAN ROY, Tony J. & WOLSEY, Laurence A., 1984. "Strong formulations for multi-item capacitated lot sizing," LIDAM Reprints CORE 590, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Zhang, Canrong & Xie, Fanrui & Huang, Kun & Wu, Tao & Liang, Zhe, 2017. "MIP models and a hybrid method for the capacitated air-cargo network planning and scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 158-173.
    11. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    12. Sohn, So Young & Kim, Hong Sik, 2007. "Random effects logistic regression model for default prediction of technology credit guarantee fund," European Journal of Operational Research, Elsevier, vol. 183(1), pages 472-478, November.
    13. Retsef Levi & Andrea Lodi & Maxim Sviridenko, 2008. "Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 461-474, May.
    14. Hartmut Stadtler, 2003. "Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows," Operations Research, INFORMS, vol. 51(3), pages 487-502, June.
    15. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    16. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    17. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    18. Berretta, Regina & Rodrigues, Luiz Fernando, 2004. "A memetic algorithm for a multistage capacitated lot-sizing problem," International Journal of Production Economics, Elsevier, vol. 87(1), pages 67-81, January.
    19. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    20. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    21. Muller, Laurent Flindt & Spoorendonk, Simon & Pisinger, David, 2012. "A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times," European Journal of Operational Research, Elsevier, vol. 218(3), pages 614-623.
    22. Xiao, Yiyong & Zhang, Renqian & Zhao, Qiuhong & Kaku, Ikou & Xu, Yuchun, 2014. "A variable neighborhood search with an effective local search for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 102-114.
    23. Yves Pochet & Laurence A. Wolsey, 1991. "Solving Multi-Item Lot-Sizing Problems Using Strong Cutting Planes," Management Science, INFORMS, vol. 37(1), pages 53-67, January.
    24. Ozdamar, Linet & Barbarosoglu, Gulay, 2000. "An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 68(3), pages 319-331, December.
    25. Tang, Ou, 2004. "Simulated annealing in lot sizing problems," International Journal of Production Economics, Elsevier, vol. 88(2), pages 173-181, March.
    26. Horst Tempelmeier & Matthias Derstroff, 1996. "A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times," Management Science, INFORMS, vol. 42(5), pages 738-757, May.
    27. Gaetan Belvaux & Laurence A. Wolsey, 2000. "bc --- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems," Management Science, INFORMS, vol. 46(5), pages 724-738, May.
    28. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    29. Dong X. Shaw & Albert P. M. Wagelmans, 1998. "An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs," Management Science, INFORMS, vol. 44(6), pages 831-838, June.
    30. Stadtler, Hartmut, 2003. "Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20204, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    31. VAN VYVE, Mathieu & WOLSEY, Laurence A & YAMAN, Hande, 2014. "Relaxations for two-level multi-item lot-sizing problems," LIDAM Reprints CORE 2611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    33. Moustapha Diaby & Harish C. Bahl & Mark H. Karwan & Stanley Zionts, 1992. "A Lagrangean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing," Management Science, INFORMS, vol. 38(9), pages 1329-1340, September.
    34. BELVAUX, Gaëtan & WOLSEY, Laurence A., 2000. "bc-prod: A specialized branch-and-cut system for lot-sizing problems," LIDAM Reprints CORE 1455, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    35. Dellaert, N. & Jeunet, J. & Jonard, N., 2000. "A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs," International Journal of Production Economics, Elsevier, vol. 68(3), pages 241-257, December.
    36. Song, Yuyue & Chan, Gin Hor, 2005. "Single item lot-sizing problems with backlogging on a single machine at a finite production rate," European Journal of Operational Research, Elsevier, vol. 161(1), pages 191-202, February.
    37. Süral, Haldun & Denizel, Meltem & Van Wassenhove, Luk N., 2009. "Lagrangean relaxation based heuristics for lot sizing with setup times," European Journal of Operational Research, Elsevier, vol. 194(1), pages 51-63, April.
    38. Mohan Gopalakrishnan & Ke Ding & Jean-Marie Bourjolly & Srimathy Mohan, 2001. "A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover," Management Science, INFORMS, vol. 47(6), pages 851-863, June.
    39. Gabriel R. Bitran & Hirofumi Matsuo, 1986. "The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formulations," Management Science, INFORMS, vol. 32(3), pages 350-359, March.
    40. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dziuba, Daryna & Almeder, Christian, 2023. "New construction heuristic for capacitated lot sizing problems," European Journal of Operational Research, Elsevier, vol. 311(3), pages 906-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    2. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    3. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    4. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    5. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    6. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    7. Dziuba, Daryna & Almeder, Christian, 2023. "New construction heuristic for capacitated lot sizing problems," European Journal of Operational Research, Elsevier, vol. 311(3), pages 906-920.
    8. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    9. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    10. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    11. Doostmohammadi, Mahdi & Akartunalı, Kerem, 2018. "Valid inequalities for two-period relaxations of big-bucket lot-sizing problems: Zero setup case," European Journal of Operational Research, Elsevier, vol. 267(1), pages 86-95.
    12. Wu, Tao & Shi, Leyuan & Geunes, Joseph & AkartunalI, Kerem, 2011. "An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging," European Journal of Operational Research, Elsevier, vol. 214(2), pages 428-441, October.
    13. Absi, Nabil & van den Heuvel, Wilco, 2019. "Worst case analysis of Relax and Fix heuristics for lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 279(2), pages 449-458.
    14. Tao Wu & Leyuan Shi & Joseph Geunes & Kerem Akartunalı, 2012. "On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times," Journal of Global Optimization, Springer, vol. 53(4), pages 615-639, August.
    15. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    16. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    17. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    18. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    19. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.
    20. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:385-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.