IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1284-1299.html
   My bibliography  Save this article

Approximation Methods for Multiobjective Optimization Problems: A Survey

Author

Listed:
  • Arne Herzel

    (Department of Mathematics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany)

  • Stefan Ruzika

    (Department of Mathematics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany)

  • Clemens Thielen

    (TUM Campus Straubing, Technical University of Munich, D-94315 Straubing, Germany)

Abstract

Algorithms for approximating the nondominated set of multiobjective optimization problems are reviewed. The approaches are categorized into general methods that are applicable under mild assumptions and, thus, to a wide range of problems, and into algorithms that are specifically tailored to structured problems. All in all, this survey covers 52 articles published within the last 41 years, that is, between 1979 and 2020. Summary of Contribution: In many problems in operations research, several conflicting objective functions have to be optimized simultaneously, and one is interested in finding Pareto optimal solutions. Because of the high complexity of finding Pareto optimal solutions and their usually very large number, however, the exact solution of such multiobjective problems is often very difficult, which motivates the study of approximation algorithms for multiobjective optimization problems. This research area uses techniques and methods from algorithmics and computing in order to efficiently determine approximate solutions to many well-known multiobjective problems from operations research. Even though approximation algorithms for multiobjective optimization problems have been investigated for more than 40 years and more than 50 research articles have been published on this topic, this paper provides the first survey of this important area at the intersection of computing and operations research.

Suggested Citation

  • Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1284-1299
    DOI: 10.1287/ijoc.2020.1028
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1028
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Erlebach & Hans Kellerer & Ulrich Pferschy, 2002. "Approximating Multiobjective Knapsack Problems," Management Science, INFORMS, vol. 48(12), pages 1603-1612, December.
    2. S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
    3. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    4. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    5. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    6. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Bazgan, Cristina & Jamain, Florian & Vanderpooten, Daniel, 2017. "Discrete representation of the non-dominated set for multi-objective optimization problems using kernels," European Journal of Operational Research, Elsevier, vol. 260(3), pages 814-827.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    2. Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2024. "Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 27-63, August.
    3. Yijie Li, 2023. "Bicriteria fabrication scheduling of two-component jobs on a single machine," Operational Research, Springer, vol. 23(4), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Vanderpooten & Lakmali Weerasena & Margaret M. Wiecek, 2017. "Covers and approximations in multiobjective optimization," Journal of Global Optimization, Springer, vol. 67(3), pages 601-619, March.
    2. Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
    3. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    4. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    5. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    6. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    7. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    8. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    9. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2007. "Approximation of min-max and min-max regret versions of some combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 179(2), pages 281-290, June.
    10. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    11. Cristina Bazgan & Arne Herzel & Stefan Ruzika & Clemens Thielen & Daniel Vanderpooten, 2024. "Approximating multiobjective optimization problems: How exact can you be?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 5-25, August.
    12. Jianping Li & Weidong Li & Junran Lichen, 2014. "The subdivision-constrained routing requests problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 152-163, January.
    13. Goldberg, Noam & Poss, Michael, 2020. "Maximum probabilistic all-or-nothing paths," European Journal of Operational Research, Elsevier, vol. 283(1), pages 279-289.
    14. Alexandre Dolgui & Mikhail Y. Kovalyov & Alain Quilliot, 2018. "Simple paths with exact and forbidden lengths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 78-85, February.
    15. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    16. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    17. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    18. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.
    19. Strehler, Martin & Merting, Sören & Schwan, Christian, 2017. "Energy-efficient shortest routes for electric and hybrid vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 111-135.
    20. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1284-1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.