IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v27y2014i1d10.1007_s10878-012-9497-4.html
   My bibliography  Save this article

The subdivision-constrained routing requests problem

Author

Listed:
  • Jianping Li

    (Yunnan University)

  • Weidong Li

    (Yunnan University)

  • Junran Lichen

    (Yunnan University)

Abstract

We are given a digraph D=(V,A;w), a length (delay) function w:A→R +, a positive integer d and a set $\mathcal{P}=\{(s_{i},t_{i};B_{i}) | i=1,2,\ldots,k\}$ of k requests, where s i ∈V is called as the ith source node, t i ∈V is called the ith sink node and B i is called as the ith length constraint. For a given positive integer d, the subdivision-constrained routing requests problem (SCRR, for short) is to find a directed subgraph D′=(V′,A′) of D, satisfying the two constraints: (1) Each request (s i ,t i ;B i ) has a path P i from s i to t i in D′ with length $w(P_{i})=\sum_{e\in P_{i}} w(e)$ no more than B i ; (2) Insert some nodes uniformly on each arc e∈A′ to ensure that each new arc has length no more than d. The objective is to minimize the total number of the nodes inserted on the arcs in A′. We obtain the following three main results: (1) The SCRR problem is at least as hard as the set cover problem even if each request has the same source s, i.e., s i =s for each i=1,2,…,k; (2) For each request (s,t;B), we design a dynamic programming algorithm to find a path from s to t with length no more than B such that the number of the nodes inserted on such a path is minimized, and as a corollary, we present a k-approximation algorithm to solve the SCRR problem for any k requests; (3) We finally present an optimal algorithm for the case where $\mathcal{P}$ contains all possible requests (s i ,t i ) in V×V and B i is equal to the length of the shortest path in D from s i to t i . To the best of our knowledge, this is the first time that the dynamic programming algorithm within polynomial time in (2) is designed for a weighted optimization problem while previous optimal algorithms run in pseudo-polynomial time.

Suggested Citation

  • Jianping Li & Weidong Li & Junran Lichen, 2014. "The subdivision-constrained routing requests problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 152-163, January.
  • Handle: RePEc:spr:jcomop:v:27:y:2014:i:1:d:10.1007_s10878-012-9497-4
    DOI: 10.1007/s10878-012-9497-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9497-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    2. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    2. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    3. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    4. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    5. Goldberg, Noam & Poss, Michael, 2020. "Maximum probabilistic all-or-nothing paths," European Journal of Operational Research, Elsevier, vol. 283(1), pages 279-289.
    6. Alexandre Dolgui & Mikhail Y. Kovalyov & Alain Quilliot, 2018. "Simple paths with exact and forbidden lengths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 78-85, February.
    7. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    8. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    9. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    10. Strehler, Martin & Merting, Sören & Schwan, Christian, 2017. "Energy-efficient shortest routes for electric and hybrid vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 111-135.
    11. Mark M. Nejad & Lena Mashayekhy & Daniel Grosu & Ratna Babu Chinnam, 2017. "Optimal Routing for Plug-In Hybrid Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1304-1325, November.
    12. Jamain, Florian, 2014. "Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14002 edited by Bazgan, Cristina.
    13. Murthy, Ishwar & Sarkar, Sumit, 1997. "Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function," European Journal of Operational Research, Elsevier, vol. 103(1), pages 209-229, November.
    14. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    15. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    16. Boaz Golany & Moshe Kress & Michal Penn & Uriel G. Rothblum, 2012. "Network Optimization Models for Resource Allocation in Developing Military Countermeasures," Operations Research, INFORMS, vol. 60(1), pages 48-63, February.
    17. Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
    18. Christian Roed Pedersen & Lars Relund Nielsen & Kim Allan Andersen, 2008. "The Bicriterion Multimodal Assignment Problem: Introduction, Analysis, and Experimental Results," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 400-411, August.
    19. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    20. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:27:y:2014:i:1:d:10.1007_s10878-012-9497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.