IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i1d10.1007_s00186-023-00823-2.html
   My bibliography  Save this article

Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory

Author

Listed:
  • Stephan Helfrich

    (RPTU Kaiserslautern-Landau)

  • Arne Herzel

    (RPTU Kaiserslautern-Landau
    Weihenstephan-Triesdorf University of Applied Sciences)

  • Stefan Ruzika

    (RPTU Kaiserslautern-Landau)

  • Clemens Thielen

    (Weihenstephan-Triesdorf University of Applied Sciences
    Technical University of Munich)

Abstract

We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized/maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition—in particular, to maximization problems—when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.

Suggested Citation

  • Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2024. "Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 27-63, August.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-023-00823-2
    DOI: 10.1007/s00186-023-00823-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-023-00823-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-023-00823-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, April.
    2. Arne Herzel & Stephan Helfrich & Stefan Ruzika & Clemens Thielen, 2023. "Approximating biobjective minimization problems using general ordering cones," Journal of Global Optimization, Springer, vol. 86(2), pages 393-415, June.
    3. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    4. Arne Herzel & Cristina Bazgan & Stefan Ruzika & Clemens Thielen & Daniel Vanderpooten, 2021. "One-exact approximate Pareto sets," Journal of Global Optimization, Springer, vol. 80(1), pages 87-115, May.
    5. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    6. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.
    2. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    3. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    4. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    5. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    6. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    7. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    8. Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
    9. Klamroth, Kathrin & Stiglmayr, Michael & Sudhoff, Julia, 2023. "Ordinal optimization through multi-objective reformulation," European Journal of Operational Research, Elsevier, vol. 311(2), pages 427-443.
    10. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    11. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.
    12. Gabriele Eichfelder & Leo Warnow, 2024. "A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 291-320, August.
    13. Stephan Helfrich & Kathrin Prinz & Stefan Ruzika, 2024. "The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1187-1216, September.
    14. Lamia Zerfa & Mohamed El-Amine Chergui, 2022. "Finding non dominated points for multiobjective integer convex programs with linear constraints," Journal of Global Optimization, Springer, vol. 84(1), pages 95-117, September.
    15. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    16. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    19. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    20. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-023-00823-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.